Exact credibility reference Bayesian premiums
In this paper, reference analysis, the tool provided by Berger et al. (2009), is used to obtain reference Bayesian premiums, which can be helpful when the practitioner has insufficient information to elicit a prior distribution. The Bayesian premiums thus obtained are based exclusively on prior dist...
Gespeichert in:
Veröffentlicht in: | Insurance, mathematics & economics mathematics & economics, 2022-07, Vol.105, p.128-143 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 143 |
---|---|
container_issue | |
container_start_page | 128 |
container_title | Insurance, mathematics & economics |
container_volume | 105 |
creator | Gómez-Déniz, Emilio Vázquez-Polo, Francisco J. |
description | In this paper, reference analysis, the tool provided by Berger et al. (2009), is used to obtain reference Bayesian premiums, which can be helpful when the practitioner has insufficient information to elicit a prior distribution. The Bayesian premiums thus obtained are based exclusively on prior distributions built from the model generated and from the available data. This mechanism produces an objective Bayesian inference, which appears to be the same as the robust Γ-minimax inference. In an informational-theoretical sense, the prior distribution used to make the inference is less informative. These Bayesian premiums are expected to approximate those which would have been obtained using proper priors describing a vague initial state of knowledge. Useful credibility expressions are readily derived by taking classes of priors involving restrictions on moments, i.e., restrictions on the collective or prior premium when the weighted squared-error loss function is used. |
doi_str_mv | 10.1016/j.insmatheco.2022.04.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2688591790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167668722000415</els_id><sourcerecordid>2688591790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-e2a5d156af9594434c1ed3300dd5a61dcb97aad2574258a637dc2bf8632228783</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwD5FYJ4zt-JElrQpFqsQG1pZrT4SjJil2iujf46pILFnN5j7mHkIKChUFKh-6Kgypt9MHurFiwFgFdQXALsiMasVL0YjmksyyVJVSanVNblLqAIA2Us1Iufq2bipcRB-2YRemYxGxxYiDw2Jhj5iCHYp9xD4c-nRLrlq7S3j3e-fk_Wn1tlyXm9fnl-XjpnQcmqlEZoWnQto2l9c1rx1FzzmA98JK6t22UdZ6JlTNhLaSK-_YttWSM8a00nxO7s-5-zh-HjBNphsPcciVhkmtRUNVA1mlzyoXx5Ty22YfQ2_j0VAwJzimM39wzAmOgdpkONm6OFsxr_gKGE1y4bTZh4huMn4M_4f8AOkEcZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688591790</pqid></control><display><type>article</type><title>Exact credibility reference Bayesian premiums</title><source>Elsevier ScienceDirect Journals</source><creator>Gómez-Déniz, Emilio ; Vázquez-Polo, Francisco J.</creator><creatorcontrib>Gómez-Déniz, Emilio ; Vázquez-Polo, Francisco J.</creatorcontrib><description>In this paper, reference analysis, the tool provided by Berger et al. (2009), is used to obtain reference Bayesian premiums, which can be helpful when the practitioner has insufficient information to elicit a prior distribution. The Bayesian premiums thus obtained are based exclusively on prior distributions built from the model generated and from the available data. This mechanism produces an objective Bayesian inference, which appears to be the same as the robust Γ-minimax inference. In an informational-theoretical sense, the prior distribution used to make the inference is less informative. These Bayesian premiums are expected to approximate those which would have been obtained using proper priors describing a vague initial state of knowledge. Useful credibility expressions are readily derived by taking classes of priors involving restrictions on moments, i.e., restrictions on the collective or prior premium when the weighted squared-error loss function is used.</description><identifier>ISSN: 0167-6687</identifier><identifier>EISSN: 1873-5959</identifier><identifier>DOI: 10.1016/j.insmatheco.2022.04.002</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bayesian ; Bayesian analysis ; Credibility ; Inference ; Insurance premiums ; Minimax technique ; Premium ; Premiums ; Reference decision ; Robustness ; Statistical inference</subject><ispartof>Insurance, mathematics & economics, 2022-07, Vol.105, p.128-143</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jul 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-e2a5d156af9594434c1ed3300dd5a61dcb97aad2574258a637dc2bf8632228783</citedby><cites>FETCH-LOGICAL-c309t-e2a5d156af9594434c1ed3300dd5a61dcb97aad2574258a637dc2bf8632228783</cites><orcidid>0000-0002-5072-7908 ; 0000-0002-0632-6138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.insmatheco.2022.04.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Gómez-Déniz, Emilio</creatorcontrib><creatorcontrib>Vázquez-Polo, Francisco J.</creatorcontrib><title>Exact credibility reference Bayesian premiums</title><title>Insurance, mathematics & economics</title><description>In this paper, reference analysis, the tool provided by Berger et al. (2009), is used to obtain reference Bayesian premiums, which can be helpful when the practitioner has insufficient information to elicit a prior distribution. The Bayesian premiums thus obtained are based exclusively on prior distributions built from the model generated and from the available data. This mechanism produces an objective Bayesian inference, which appears to be the same as the robust Γ-minimax inference. In an informational-theoretical sense, the prior distribution used to make the inference is less informative. These Bayesian premiums are expected to approximate those which would have been obtained using proper priors describing a vague initial state of knowledge. Useful credibility expressions are readily derived by taking classes of priors involving restrictions on moments, i.e., restrictions on the collective or prior premium when the weighted squared-error loss function is used.</description><subject>Bayesian</subject><subject>Bayesian analysis</subject><subject>Credibility</subject><subject>Inference</subject><subject>Insurance premiums</subject><subject>Minimax technique</subject><subject>Premium</subject><subject>Premiums</subject><subject>Reference decision</subject><subject>Robustness</subject><subject>Statistical inference</subject><issn>0167-6687</issn><issn>1873-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwD5FYJ4zt-JElrQpFqsQG1pZrT4SjJil2iujf46pILFnN5j7mHkIKChUFKh-6Kgypt9MHurFiwFgFdQXALsiMasVL0YjmksyyVJVSanVNblLqAIA2Us1Iufq2bipcRB-2YRemYxGxxYiDw2Jhj5iCHYp9xD4c-nRLrlq7S3j3e-fk_Wn1tlyXm9fnl-XjpnQcmqlEZoWnQto2l9c1rx1FzzmA98JK6t22UdZ6JlTNhLaSK-_YttWSM8a00nxO7s-5-zh-HjBNphsPcciVhkmtRUNVA1mlzyoXx5Ty22YfQ2_j0VAwJzimM39wzAmOgdpkONm6OFsxr_gKGE1y4bTZh4huMn4M_4f8AOkEcZw</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Gómez-Déniz, Emilio</creator><creator>Vázquez-Polo, Francisco J.</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-5072-7908</orcidid><orcidid>https://orcid.org/0000-0002-0632-6138</orcidid></search><sort><creationdate>202207</creationdate><title>Exact credibility reference Bayesian premiums</title><author>Gómez-Déniz, Emilio ; Vázquez-Polo, Francisco J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-e2a5d156af9594434c1ed3300dd5a61dcb97aad2574258a637dc2bf8632228783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayesian</topic><topic>Bayesian analysis</topic><topic>Credibility</topic><topic>Inference</topic><topic>Insurance premiums</topic><topic>Minimax technique</topic><topic>Premium</topic><topic>Premiums</topic><topic>Reference decision</topic><topic>Robustness</topic><topic>Statistical inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez-Déniz, Emilio</creatorcontrib><creatorcontrib>Vázquez-Polo, Francisco J.</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Insurance, mathematics & economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez-Déniz, Emilio</au><au>Vázquez-Polo, Francisco J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact credibility reference Bayesian premiums</atitle><jtitle>Insurance, mathematics & economics</jtitle><date>2022-07</date><risdate>2022</risdate><volume>105</volume><spage>128</spage><epage>143</epage><pages>128-143</pages><issn>0167-6687</issn><eissn>1873-5959</eissn><abstract>In this paper, reference analysis, the tool provided by Berger et al. (2009), is used to obtain reference Bayesian premiums, which can be helpful when the practitioner has insufficient information to elicit a prior distribution. The Bayesian premiums thus obtained are based exclusively on prior distributions built from the model generated and from the available data. This mechanism produces an objective Bayesian inference, which appears to be the same as the robust Γ-minimax inference. In an informational-theoretical sense, the prior distribution used to make the inference is less informative. These Bayesian premiums are expected to approximate those which would have been obtained using proper priors describing a vague initial state of knowledge. Useful credibility expressions are readily derived by taking classes of priors involving restrictions on moments, i.e., restrictions on the collective or prior premium when the weighted squared-error loss function is used.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.insmatheco.2022.04.002</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5072-7908</orcidid><orcidid>https://orcid.org/0000-0002-0632-6138</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-6687 |
ispartof | Insurance, mathematics & economics, 2022-07, Vol.105, p.128-143 |
issn | 0167-6687 1873-5959 |
language | eng |
recordid | cdi_proquest_journals_2688591790 |
source | Elsevier ScienceDirect Journals |
subjects | Bayesian Bayesian analysis Credibility Inference Insurance premiums Minimax technique Premium Premiums Reference decision Robustness Statistical inference |
title | Exact credibility reference Bayesian premiums |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A35%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20credibility%20reference%20Bayesian%20premiums&rft.jtitle=Insurance,%20mathematics%20&%20economics&rft.au=G%C3%B3mez-D%C3%A9niz,%20Emilio&rft.date=2022-07&rft.volume=105&rft.spage=128&rft.epage=143&rft.pages=128-143&rft.issn=0167-6687&rft.eissn=1873-5959&rft_id=info:doi/10.1016/j.insmatheco.2022.04.002&rft_dat=%3Cproquest_cross%3E2688591790%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688591790&rft_id=info:pmid/&rft_els_id=S0167668722000415&rfr_iscdi=true |