Exact credibility reference Bayesian premiums

In this paper, reference analysis, the tool provided by Berger et al. (2009), is used to obtain reference Bayesian premiums, which can be helpful when the practitioner has insufficient information to elicit a prior distribution. The Bayesian premiums thus obtained are based exclusively on prior dist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Insurance, mathematics & economics mathematics & economics, 2022-07, Vol.105, p.128-143
Hauptverfasser: Gómez-Déniz, Emilio, Vázquez-Polo, Francisco J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 143
container_issue
container_start_page 128
container_title Insurance, mathematics & economics
container_volume 105
creator Gómez-Déniz, Emilio
Vázquez-Polo, Francisco J.
description In this paper, reference analysis, the tool provided by Berger et al. (2009), is used to obtain reference Bayesian premiums, which can be helpful when the practitioner has insufficient information to elicit a prior distribution. The Bayesian premiums thus obtained are based exclusively on prior distributions built from the model generated and from the available data. This mechanism produces an objective Bayesian inference, which appears to be the same as the robust Γ-minimax inference. In an informational-theoretical sense, the prior distribution used to make the inference is less informative. These Bayesian premiums are expected to approximate those which would have been obtained using proper priors describing a vague initial state of knowledge. Useful credibility expressions are readily derived by taking classes of priors involving restrictions on moments, i.e., restrictions on the collective or prior premium when the weighted squared-error loss function is used.
doi_str_mv 10.1016/j.insmatheco.2022.04.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2688591790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167668722000415</els_id><sourcerecordid>2688591790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-e2a5d156af9594434c1ed3300dd5a61dcb97aad2574258a637dc2bf8632228783</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwD5FYJ4zt-JElrQpFqsQG1pZrT4SjJil2iujf46pILFnN5j7mHkIKChUFKh-6Kgypt9MHurFiwFgFdQXALsiMasVL0YjmksyyVJVSanVNblLqAIA2Us1Iufq2bipcRB-2YRemYxGxxYiDw2Jhj5iCHYp9xD4c-nRLrlq7S3j3e-fk_Wn1tlyXm9fnl-XjpnQcmqlEZoWnQto2l9c1rx1FzzmA98JK6t22UdZ6JlTNhLaSK-_YttWSM8a00nxO7s-5-zh-HjBNphsPcciVhkmtRUNVA1mlzyoXx5Ty22YfQ2_j0VAwJzimM39wzAmOgdpkONm6OFsxr_gKGE1y4bTZh4huMn4M_4f8AOkEcZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688591790</pqid></control><display><type>article</type><title>Exact credibility reference Bayesian premiums</title><source>Elsevier ScienceDirect Journals</source><creator>Gómez-Déniz, Emilio ; Vázquez-Polo, Francisco J.</creator><creatorcontrib>Gómez-Déniz, Emilio ; Vázquez-Polo, Francisco J.</creatorcontrib><description>In this paper, reference analysis, the tool provided by Berger et al. (2009), is used to obtain reference Bayesian premiums, which can be helpful when the practitioner has insufficient information to elicit a prior distribution. The Bayesian premiums thus obtained are based exclusively on prior distributions built from the model generated and from the available data. This mechanism produces an objective Bayesian inference, which appears to be the same as the robust Γ-minimax inference. In an informational-theoretical sense, the prior distribution used to make the inference is less informative. These Bayesian premiums are expected to approximate those which would have been obtained using proper priors describing a vague initial state of knowledge. Useful credibility expressions are readily derived by taking classes of priors involving restrictions on moments, i.e., restrictions on the collective or prior premium when the weighted squared-error loss function is used.</description><identifier>ISSN: 0167-6687</identifier><identifier>EISSN: 1873-5959</identifier><identifier>DOI: 10.1016/j.insmatheco.2022.04.002</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bayesian ; Bayesian analysis ; Credibility ; Inference ; Insurance premiums ; Minimax technique ; Premium ; Premiums ; Reference decision ; Robustness ; Statistical inference</subject><ispartof>Insurance, mathematics &amp; economics, 2022-07, Vol.105, p.128-143</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jul 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-e2a5d156af9594434c1ed3300dd5a61dcb97aad2574258a637dc2bf8632228783</citedby><cites>FETCH-LOGICAL-c309t-e2a5d156af9594434c1ed3300dd5a61dcb97aad2574258a637dc2bf8632228783</cites><orcidid>0000-0002-5072-7908 ; 0000-0002-0632-6138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.insmatheco.2022.04.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Gómez-Déniz, Emilio</creatorcontrib><creatorcontrib>Vázquez-Polo, Francisco J.</creatorcontrib><title>Exact credibility reference Bayesian premiums</title><title>Insurance, mathematics &amp; economics</title><description>In this paper, reference analysis, the tool provided by Berger et al. (2009), is used to obtain reference Bayesian premiums, which can be helpful when the practitioner has insufficient information to elicit a prior distribution. The Bayesian premiums thus obtained are based exclusively on prior distributions built from the model generated and from the available data. This mechanism produces an objective Bayesian inference, which appears to be the same as the robust Γ-minimax inference. In an informational-theoretical sense, the prior distribution used to make the inference is less informative. These Bayesian premiums are expected to approximate those which would have been obtained using proper priors describing a vague initial state of knowledge. Useful credibility expressions are readily derived by taking classes of priors involving restrictions on moments, i.e., restrictions on the collective or prior premium when the weighted squared-error loss function is used.</description><subject>Bayesian</subject><subject>Bayesian analysis</subject><subject>Credibility</subject><subject>Inference</subject><subject>Insurance premiums</subject><subject>Minimax technique</subject><subject>Premium</subject><subject>Premiums</subject><subject>Reference decision</subject><subject>Robustness</subject><subject>Statistical inference</subject><issn>0167-6687</issn><issn>1873-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwD5FYJ4zt-JElrQpFqsQG1pZrT4SjJil2iujf46pILFnN5j7mHkIKChUFKh-6Kgypt9MHurFiwFgFdQXALsiMasVL0YjmksyyVJVSanVNblLqAIA2Us1Iufq2bipcRB-2YRemYxGxxYiDw2Jhj5iCHYp9xD4c-nRLrlq7S3j3e-fk_Wn1tlyXm9fnl-XjpnQcmqlEZoWnQto2l9c1rx1FzzmA98JK6t22UdZ6JlTNhLaSK-_YttWSM8a00nxO7s-5-zh-HjBNphsPcciVhkmtRUNVA1mlzyoXx5Ty22YfQ2_j0VAwJzimM39wzAmOgdpkONm6OFsxr_gKGE1y4bTZh4huMn4M_4f8AOkEcZw</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Gómez-Déniz, Emilio</creator><creator>Vázquez-Polo, Francisco J.</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-5072-7908</orcidid><orcidid>https://orcid.org/0000-0002-0632-6138</orcidid></search><sort><creationdate>202207</creationdate><title>Exact credibility reference Bayesian premiums</title><author>Gómez-Déniz, Emilio ; Vázquez-Polo, Francisco J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-e2a5d156af9594434c1ed3300dd5a61dcb97aad2574258a637dc2bf8632228783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayesian</topic><topic>Bayesian analysis</topic><topic>Credibility</topic><topic>Inference</topic><topic>Insurance premiums</topic><topic>Minimax technique</topic><topic>Premium</topic><topic>Premiums</topic><topic>Reference decision</topic><topic>Robustness</topic><topic>Statistical inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez-Déniz, Emilio</creatorcontrib><creatorcontrib>Vázquez-Polo, Francisco J.</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Insurance, mathematics &amp; economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez-Déniz, Emilio</au><au>Vázquez-Polo, Francisco J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact credibility reference Bayesian premiums</atitle><jtitle>Insurance, mathematics &amp; economics</jtitle><date>2022-07</date><risdate>2022</risdate><volume>105</volume><spage>128</spage><epage>143</epage><pages>128-143</pages><issn>0167-6687</issn><eissn>1873-5959</eissn><abstract>In this paper, reference analysis, the tool provided by Berger et al. (2009), is used to obtain reference Bayesian premiums, which can be helpful when the practitioner has insufficient information to elicit a prior distribution. The Bayesian premiums thus obtained are based exclusively on prior distributions built from the model generated and from the available data. This mechanism produces an objective Bayesian inference, which appears to be the same as the robust Γ-minimax inference. In an informational-theoretical sense, the prior distribution used to make the inference is less informative. These Bayesian premiums are expected to approximate those which would have been obtained using proper priors describing a vague initial state of knowledge. Useful credibility expressions are readily derived by taking classes of priors involving restrictions on moments, i.e., restrictions on the collective or prior premium when the weighted squared-error loss function is used.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.insmatheco.2022.04.002</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5072-7908</orcidid><orcidid>https://orcid.org/0000-0002-0632-6138</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-6687
ispartof Insurance, mathematics & economics, 2022-07, Vol.105, p.128-143
issn 0167-6687
1873-5959
language eng
recordid cdi_proquest_journals_2688591790
source Elsevier ScienceDirect Journals
subjects Bayesian
Bayesian analysis
Credibility
Inference
Insurance premiums
Minimax technique
Premium
Premiums
Reference decision
Robustness
Statistical inference
title Exact credibility reference Bayesian premiums
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A35%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20credibility%20reference%20Bayesian%20premiums&rft.jtitle=Insurance,%20mathematics%20&%20economics&rft.au=G%C3%B3mez-D%C3%A9niz,%20Emilio&rft.date=2022-07&rft.volume=105&rft.spage=128&rft.epage=143&rft.pages=128-143&rft.issn=0167-6687&rft.eissn=1873-5959&rft_id=info:doi/10.1016/j.insmatheco.2022.04.002&rft_dat=%3Cproquest_cross%3E2688591790%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688591790&rft_id=info:pmid/&rft_els_id=S0167668722000415&rfr_iscdi=true