A meso-scale size effect study of concrete tensile strength considering parameters of random fields

•Develop a statistical framework to evaluate the size effect of concrete by Weibull random fields and the phase-field cohesive zone model.•Perform extensive Monte Carlo simulations with parametric analyses of correlation length and variance in random fields.•Reveal the statistical trend of size effe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering fracture mechanics 2022-06, Vol.269, p.108519, Article 108519
Hauptverfasser: Zhang, Hui, Huang, Yu-jie, Guo, Fu-qiang, Yang, Zhen-jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 108519
container_title Engineering fracture mechanics
container_volume 269
creator Zhang, Hui
Huang, Yu-jie
Guo, Fu-qiang
Yang, Zhen-jun
description •Develop a statistical framework to evaluate the size effect of concrete by Weibull random fields and the phase-field cohesive zone model.•Perform extensive Monte Carlo simulations with parametric analyses of correlation length and variance in random fields.•Reveal the statistical trend of size effects in tensile strength.•Propose a modified size-effect law considering correlation length and variance by data regression. This study analyses size effects of concrete under uniaxial tension by Monte Carlo simulations, where heterogeneous strength at meso-scale is modelled by Weibull random fields with statistical parameters including correlation length and variance. For a given sample size and different random field parameters, a sufficient number of random field realisations are simulated to obtain statistical information from macroscopic stress-strain curves, while the complex meso-crack initiation and propagation is captured by the phase-field regularized cohesive zone model (PF-CZM). The effects of sample size and material heterogeneity on macroscopic tensile strength are analysed, and the quasi-brittle transition between plasticity and linear elastic fracture mechanics (LEFM) is well simulated using the nonlocal PF-CZM. It is also found that both the correlation length and the variance affect the trend of size effect in varying degrees: larger correlation length and higher variance with higher heterogeneity lead to more dispersed responses that approach the LEFM descending line. A modified law in three-dimensional parametric space is proposed by data regression for effective assessment of size effect and structural reliability.
doi_str_mv 10.1016/j.engfracmech.2022.108519
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2688584977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013794422002582</els_id><sourcerecordid>2688584977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-e24ef2fa07630386efb70e3a1a8e2d90a36b974f648e948dc199e2968b1f3de63</originalsourceid><addsrcrecordid>eNqNkE1PAyEQhonRxFr9DxjPW4GlLBybxq_ExIueCYWhZdNdKmxN6q-XzXrw6GkmM-87Hw9Ct5QsKKHivl1Av_XJ2A7sbsEIY6Uul1SdoRmVTV01NV2eoxkhtOSK80t0lXNLCGmEJDNkV7iDHKtszR5wDt-AwXuwA87D0Z1w9NjG3iYYAA_Q5zCqhlSWDruxk4ODFPotPphkuqJKefQk07vYYR9g7_I1uvBmn-HmN87Rx-PD-_q5en17elmvXivLBB8qYBw886ZcVpNaCvCbhkBtqJHAnCKmFhvVcC-4BMWls1QpYErIDfW1A1HP0d0095Di5xHyoNt4TH1ZqZmQcim5apqiUpPKpphzAq8PKXQmnTQlemSqW_2HqR6Z6olp8a4nL5Q3vgIknW2A3oILqTDTLoZ_TPkBAYiG6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688584977</pqid></control><display><type>article</type><title>A meso-scale size effect study of concrete tensile strength considering parameters of random fields</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Hui ; Huang, Yu-jie ; Guo, Fu-qiang ; Yang, Zhen-jun</creator><creatorcontrib>Zhang, Hui ; Huang, Yu-jie ; Guo, Fu-qiang ; Yang, Zhen-jun</creatorcontrib><description>•Develop a statistical framework to evaluate the size effect of concrete by Weibull random fields and the phase-field cohesive zone model.•Perform extensive Monte Carlo simulations with parametric analyses of correlation length and variance in random fields.•Reveal the statistical trend of size effects in tensile strength.•Propose a modified size-effect law considering correlation length and variance by data regression. This study analyses size effects of concrete under uniaxial tension by Monte Carlo simulations, where heterogeneous strength at meso-scale is modelled by Weibull random fields with statistical parameters including correlation length and variance. For a given sample size and different random field parameters, a sufficient number of random field realisations are simulated to obtain statistical information from macroscopic stress-strain curves, while the complex meso-crack initiation and propagation is captured by the phase-field regularized cohesive zone model (PF-CZM). The effects of sample size and material heterogeneity on macroscopic tensile strength are analysed, and the quasi-brittle transition between plasticity and linear elastic fracture mechanics (LEFM) is well simulated using the nonlocal PF-CZM. It is also found that both the correlation length and the variance affect the trend of size effect in varying degrees: larger correlation length and higher variance with higher heterogeneity lead to more dispersed responses that approach the LEFM descending line. A modified law in three-dimensional parametric space is proposed by data regression for effective assessment of size effect and structural reliability.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/j.engfracmech.2022.108519</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Correlation ; Crack initiation ; Crack propagation ; Ductile-brittle transition ; Fields (mathematics) ; Fracture mechanics ; Heterogeneity ; Linear elastic fracture mechanics ; Mathematical models ; Meso-scale fracture of concrete ; Mesoscale phenomena ; Monte Carlo simulations ; Parameters ; Phase-field cohesive zone model ; Random field ; Reliability analysis ; Reliability engineering ; Simulation ; Size effect ; Size effects ; Statistical analysis ; Stress propagation ; Stress-strain curves ; Structural reliability ; Tensile strength ; Variance</subject><ispartof>Engineering fracture mechanics, 2022-06, Vol.269, p.108519, Article 108519</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-e24ef2fa07630386efb70e3a1a8e2d90a36b974f648e948dc199e2968b1f3de63</citedby><cites>FETCH-LOGICAL-c264t-e24ef2fa07630386efb70e3a1a8e2d90a36b974f648e948dc199e2968b1f3de63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013794422002582$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Huang, Yu-jie</creatorcontrib><creatorcontrib>Guo, Fu-qiang</creatorcontrib><creatorcontrib>Yang, Zhen-jun</creatorcontrib><title>A meso-scale size effect study of concrete tensile strength considering parameters of random fields</title><title>Engineering fracture mechanics</title><description>•Develop a statistical framework to evaluate the size effect of concrete by Weibull random fields and the phase-field cohesive zone model.•Perform extensive Monte Carlo simulations with parametric analyses of correlation length and variance in random fields.•Reveal the statistical trend of size effects in tensile strength.•Propose a modified size-effect law considering correlation length and variance by data regression. This study analyses size effects of concrete under uniaxial tension by Monte Carlo simulations, where heterogeneous strength at meso-scale is modelled by Weibull random fields with statistical parameters including correlation length and variance. For a given sample size and different random field parameters, a sufficient number of random field realisations are simulated to obtain statistical information from macroscopic stress-strain curves, while the complex meso-crack initiation and propagation is captured by the phase-field regularized cohesive zone model (PF-CZM). The effects of sample size and material heterogeneity on macroscopic tensile strength are analysed, and the quasi-brittle transition between plasticity and linear elastic fracture mechanics (LEFM) is well simulated using the nonlocal PF-CZM. It is also found that both the correlation length and the variance affect the trend of size effect in varying degrees: larger correlation length and higher variance with higher heterogeneity lead to more dispersed responses that approach the LEFM descending line. A modified law in three-dimensional parametric space is proposed by data regression for effective assessment of size effect and structural reliability.</description><subject>Correlation</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Ductile-brittle transition</subject><subject>Fields (mathematics)</subject><subject>Fracture mechanics</subject><subject>Heterogeneity</subject><subject>Linear elastic fracture mechanics</subject><subject>Mathematical models</subject><subject>Meso-scale fracture of concrete</subject><subject>Mesoscale phenomena</subject><subject>Monte Carlo simulations</subject><subject>Parameters</subject><subject>Phase-field cohesive zone model</subject><subject>Random field</subject><subject>Reliability analysis</subject><subject>Reliability engineering</subject><subject>Simulation</subject><subject>Size effect</subject><subject>Size effects</subject><subject>Statistical analysis</subject><subject>Stress propagation</subject><subject>Stress-strain curves</subject><subject>Structural reliability</subject><subject>Tensile strength</subject><subject>Variance</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PAyEQhonRxFr9DxjPW4GlLBybxq_ExIueCYWhZdNdKmxN6q-XzXrw6GkmM-87Hw9Ct5QsKKHivl1Av_XJ2A7sbsEIY6Uul1SdoRmVTV01NV2eoxkhtOSK80t0lXNLCGmEJDNkV7iDHKtszR5wDt-AwXuwA87D0Z1w9NjG3iYYAA_Q5zCqhlSWDruxk4ODFPotPphkuqJKefQk07vYYR9g7_I1uvBmn-HmN87Rx-PD-_q5en17elmvXivLBB8qYBw886ZcVpNaCvCbhkBtqJHAnCKmFhvVcC-4BMWls1QpYErIDfW1A1HP0d0095Di5xHyoNt4TH1ZqZmQcim5apqiUpPKpphzAq8PKXQmnTQlemSqW_2HqR6Z6olp8a4nL5Q3vgIknW2A3oILqTDTLoZ_TPkBAYiG6Q</recordid><startdate>20220615</startdate><enddate>20220615</enddate><creator>Zhang, Hui</creator><creator>Huang, Yu-jie</creator><creator>Guo, Fu-qiang</creator><creator>Yang, Zhen-jun</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20220615</creationdate><title>A meso-scale size effect study of concrete tensile strength considering parameters of random fields</title><author>Zhang, Hui ; Huang, Yu-jie ; Guo, Fu-qiang ; Yang, Zhen-jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-e24ef2fa07630386efb70e3a1a8e2d90a36b974f648e948dc199e2968b1f3de63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Correlation</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Ductile-brittle transition</topic><topic>Fields (mathematics)</topic><topic>Fracture mechanics</topic><topic>Heterogeneity</topic><topic>Linear elastic fracture mechanics</topic><topic>Mathematical models</topic><topic>Meso-scale fracture of concrete</topic><topic>Mesoscale phenomena</topic><topic>Monte Carlo simulations</topic><topic>Parameters</topic><topic>Phase-field cohesive zone model</topic><topic>Random field</topic><topic>Reliability analysis</topic><topic>Reliability engineering</topic><topic>Simulation</topic><topic>Size effect</topic><topic>Size effects</topic><topic>Statistical analysis</topic><topic>Stress propagation</topic><topic>Stress-strain curves</topic><topic>Structural reliability</topic><topic>Tensile strength</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Huang, Yu-jie</creatorcontrib><creatorcontrib>Guo, Fu-qiang</creatorcontrib><creatorcontrib>Yang, Zhen-jun</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hui</au><au>Huang, Yu-jie</au><au>Guo, Fu-qiang</au><au>Yang, Zhen-jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A meso-scale size effect study of concrete tensile strength considering parameters of random fields</atitle><jtitle>Engineering fracture mechanics</jtitle><date>2022-06-15</date><risdate>2022</risdate><volume>269</volume><spage>108519</spage><pages>108519-</pages><artnum>108519</artnum><issn>0013-7944</issn><eissn>1873-7315</eissn><abstract>•Develop a statistical framework to evaluate the size effect of concrete by Weibull random fields and the phase-field cohesive zone model.•Perform extensive Monte Carlo simulations with parametric analyses of correlation length and variance in random fields.•Reveal the statistical trend of size effects in tensile strength.•Propose a modified size-effect law considering correlation length and variance by data regression. This study analyses size effects of concrete under uniaxial tension by Monte Carlo simulations, where heterogeneous strength at meso-scale is modelled by Weibull random fields with statistical parameters including correlation length and variance. For a given sample size and different random field parameters, a sufficient number of random field realisations are simulated to obtain statistical information from macroscopic stress-strain curves, while the complex meso-crack initiation and propagation is captured by the phase-field regularized cohesive zone model (PF-CZM). The effects of sample size and material heterogeneity on macroscopic tensile strength are analysed, and the quasi-brittle transition between plasticity and linear elastic fracture mechanics (LEFM) is well simulated using the nonlocal PF-CZM. It is also found that both the correlation length and the variance affect the trend of size effect in varying degrees: larger correlation length and higher variance with higher heterogeneity lead to more dispersed responses that approach the LEFM descending line. A modified law in three-dimensional parametric space is proposed by data regression for effective assessment of size effect and structural reliability.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engfracmech.2022.108519</doi></addata></record>
fulltext fulltext
identifier ISSN: 0013-7944
ispartof Engineering fracture mechanics, 2022-06, Vol.269, p.108519, Article 108519
issn 0013-7944
1873-7315
language eng
recordid cdi_proquest_journals_2688584977
source Elsevier ScienceDirect Journals
subjects Correlation
Crack initiation
Crack propagation
Ductile-brittle transition
Fields (mathematics)
Fracture mechanics
Heterogeneity
Linear elastic fracture mechanics
Mathematical models
Meso-scale fracture of concrete
Mesoscale phenomena
Monte Carlo simulations
Parameters
Phase-field cohesive zone model
Random field
Reliability analysis
Reliability engineering
Simulation
Size effect
Size effects
Statistical analysis
Stress propagation
Stress-strain curves
Structural reliability
Tensile strength
Variance
title A meso-scale size effect study of concrete tensile strength considering parameters of random fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A18%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20meso-scale%20size%20effect%20study%20of%20concrete%20tensile%20strength%20considering%20parameters%20of%20random%20fields&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Zhang,%20Hui&rft.date=2022-06-15&rft.volume=269&rft.spage=108519&rft.pages=108519-&rft.artnum=108519&rft.issn=0013-7944&rft.eissn=1873-7315&rft_id=info:doi/10.1016/j.engfracmech.2022.108519&rft_dat=%3Cproquest_cross%3E2688584977%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688584977&rft_id=info:pmid/&rft_els_id=S0013794422002582&rfr_iscdi=true