Skillful Long‐Lead Prediction of Summertime Heavy Rainfall in the US Midwest From Sea Surface Salinity

Summertime heavy rainfall and its resultant floods are among the most harmful natural hazards in the US Midwest, one of the world's primary crop production areas. However, seasonal forecasts of heavy rain, currently based on preseason sea surface temperature anomalies (SSTAs), remain unsatisfac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2022-07, Vol.49 (13), p.n/a
Hauptverfasser: Li, Laifang, Schmitt, Raymond W., Ummenhofer, Caroline C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 13
container_start_page
container_title Geophysical research letters
container_volume 49
creator Li, Laifang
Schmitt, Raymond W.
Ummenhofer, Caroline C.
description Summertime heavy rainfall and its resultant floods are among the most harmful natural hazards in the US Midwest, one of the world's primary crop production areas. However, seasonal forecasts of heavy rain, currently based on preseason sea surface temperature anomalies (SSTAs), remain unsatisfactory. Here, we present evidence that sea surface salinity anomalies (SSSAs) over the tropical western Pacific and subtropical North Atlantic are skillful predictors of summer time heavy rainfall one season ahead. A one standard deviation change in tropical western Pacific SSSA is associated with a 1.8 mm day−1 increase in local precipitation, which excites a teleconnection pattern to extratropical North Pacific. Via extratropical air‐sea interaction and long memory of midlatitude SSTA, a wave train favorable for US Midwest heavy rain is induced. Combined with soil moisture feedbacks bridging the springtime North Atlantic salinity, the SSSA‐based statistical prediction model improves Midwest heavy rainfall forecasts by 92%, complementing existing SSTA‐based frameworks. Plain Language Summary Predicting heavy rainfall one season ahead is challenging for the US Midwest, a primary crop production area in the world. In this study, we show a skillful prediction of Midwest heavy rain using sea surface salinity anomalies (SSSAs) in the western tropical Pacific and subtropical North Atlantic. Compared to sea surface temperature anomalies which traditionally form the basis for seasonal precipitation forecasts, our newly identified SSSA‐based predictors improve the accuracy of heavy rainfall prediction by 92%. This superior skill of SSSA‐based prediction appears to result from a close relationship between salinity variations and the oceanic water cycle, as well as related atmospheric circulation changes and soil moisture feedback. Key Points Heavy rainfall explains the majority of the year‐to‐year variation of summer precipitation in the US Midwest SSS in the tropical Pacific and subtropical North Atlantic equally contribute to skillful predictions of Midwest heavy rain a season ahead Skillful prediction from SSS is realized through tropical‐extratropical teleconnections and local soil moisture feedback
doi_str_mv 10.1029/2022GL098554
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2688573591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2688573591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3065-8156988c4b07f35e17893307b7e55fc714bc0564c6bd2ae40cee98209c05c4323</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqWw4wCW2FIY_yX2ElXQIgWBGrqOXHdCXfJTnISqO47AGTkJQWXBitWMRt97b_QIOWdwxYCbaw6cTxIwWil5QAbMSDnSAPEhGQCYfudxdExOmmYNAAIEG5BV-uqLIu8KmtTVy9fHZ4J2SZ8CLr1rfV3ROqdpV5YYWl8inaJ939GZ9VVui4L6irYrpPOUPvjlFpuW3oW6pCnaXhRy65CmtvCVb3en5KiXNHj2O4dkfnf7PJ6OksfJ_fgmGTkBkRpppiKjtZMLiHOhkMXaCAHxIkalchczuXCgIumixZJblOAQjeZg-quTgoshudj7bkL91vUvZeu6C1UfmfFIaxULZVhPXe4pF-qmCZhnm-BLG3YZg-yny-xvlz3O9_jWF7j7l80msySSIlLiG_V5dI4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688573591</pqid></control><display><type>article</type><title>Skillful Long‐Lead Prediction of Summertime Heavy Rainfall in the US Midwest From Sea Surface Salinity</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Li, Laifang ; Schmitt, Raymond W. ; Ummenhofer, Caroline C.</creator><creatorcontrib>Li, Laifang ; Schmitt, Raymond W. ; Ummenhofer, Caroline C.</creatorcontrib><description>Summertime heavy rainfall and its resultant floods are among the most harmful natural hazards in the US Midwest, one of the world's primary crop production areas. However, seasonal forecasts of heavy rain, currently based on preseason sea surface temperature anomalies (SSTAs), remain unsatisfactory. Here, we present evidence that sea surface salinity anomalies (SSSAs) over the tropical western Pacific and subtropical North Atlantic are skillful predictors of summer time heavy rainfall one season ahead. A one standard deviation change in tropical western Pacific SSSA is associated with a 1.8 mm day−1 increase in local precipitation, which excites a teleconnection pattern to extratropical North Pacific. Via extratropical air‐sea interaction and long memory of midlatitude SSTA, a wave train favorable for US Midwest heavy rain is induced. Combined with soil moisture feedbacks bridging the springtime North Atlantic salinity, the SSSA‐based statistical prediction model improves Midwest heavy rainfall forecasts by 92%, complementing existing SSTA‐based frameworks. Plain Language Summary Predicting heavy rainfall one season ahead is challenging for the US Midwest, a primary crop production area in the world. In this study, we show a skillful prediction of Midwest heavy rain using sea surface salinity anomalies (SSSAs) in the western tropical Pacific and subtropical North Atlantic. Compared to sea surface temperature anomalies which traditionally form the basis for seasonal precipitation forecasts, our newly identified SSSA‐based predictors improve the accuracy of heavy rainfall prediction by 92%. This superior skill of SSSA‐based prediction appears to result from a close relationship between salinity variations and the oceanic water cycle, as well as related atmospheric circulation changes and soil moisture feedback. Key Points Heavy rainfall explains the majority of the year‐to‐year variation of summer precipitation in the US Midwest SSS in the tropical Pacific and subtropical North Atlantic equally contribute to skillful predictions of Midwest heavy rain a season ahead Skillful prediction from SSS is realized through tropical‐extratropical teleconnections and local soil moisture feedback</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2022GL098554</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Anomalies ; Atmospheric circulation ; Atmospheric circulation changes ; Atmospheric precipitations ; Crop production ; heavy rainfall ; Hydrologic cycle ; Hydrological cycle ; Local precipitation ; long‐lead prediction ; Mathematical models ; Midwest precipitation ; Moisture effects ; Precipitation ; Precipitation forecasting ; Prediction models ; Rain ; Rainfall ; Rainfall forecasting ; Salinity ; Salinity effects ; Salinity variations ; Sea surface ; sea surface salinity ; Sea surface temperature ; Sea surface temperature anomalies ; Seasonal forecasting ; Seasonal precipitation ; Seasons ; Soil ; Soil moisture ; Statistical models ; Summer ; Surface salinity ; Surface temperature ; Teleconnection patterns ; Temperature anomalies ; Tropical climate ; Water circulation ; Wave trains ; Weather forecasting</subject><ispartof>Geophysical research letters, 2022-07, Vol.49 (13), p.n/a</ispartof><rights>2022. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3065-8156988c4b07f35e17893307b7e55fc714bc0564c6bd2ae40cee98209c05c4323</citedby><cites>FETCH-LOGICAL-c3065-8156988c4b07f35e17893307b7e55fc714bc0564c6bd2ae40cee98209c05c4323</cites><orcidid>0000-0002-9163-3967 ; 0000-0002-6721-9002</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2022GL098554$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2022GL098554$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,1430,11497,27907,27908,45557,45558,46392,46451,46816,46875</link.rule.ids></links><search><creatorcontrib>Li, Laifang</creatorcontrib><creatorcontrib>Schmitt, Raymond W.</creatorcontrib><creatorcontrib>Ummenhofer, Caroline C.</creatorcontrib><title>Skillful Long‐Lead Prediction of Summertime Heavy Rainfall in the US Midwest From Sea Surface Salinity</title><title>Geophysical research letters</title><description>Summertime heavy rainfall and its resultant floods are among the most harmful natural hazards in the US Midwest, one of the world's primary crop production areas. However, seasonal forecasts of heavy rain, currently based on preseason sea surface temperature anomalies (SSTAs), remain unsatisfactory. Here, we present evidence that sea surface salinity anomalies (SSSAs) over the tropical western Pacific and subtropical North Atlantic are skillful predictors of summer time heavy rainfall one season ahead. A one standard deviation change in tropical western Pacific SSSA is associated with a 1.8 mm day−1 increase in local precipitation, which excites a teleconnection pattern to extratropical North Pacific. Via extratropical air‐sea interaction and long memory of midlatitude SSTA, a wave train favorable for US Midwest heavy rain is induced. Combined with soil moisture feedbacks bridging the springtime North Atlantic salinity, the SSSA‐based statistical prediction model improves Midwest heavy rainfall forecasts by 92%, complementing existing SSTA‐based frameworks. Plain Language Summary Predicting heavy rainfall one season ahead is challenging for the US Midwest, a primary crop production area in the world. In this study, we show a skillful prediction of Midwest heavy rain using sea surface salinity anomalies (SSSAs) in the western tropical Pacific and subtropical North Atlantic. Compared to sea surface temperature anomalies which traditionally form the basis for seasonal precipitation forecasts, our newly identified SSSA‐based predictors improve the accuracy of heavy rainfall prediction by 92%. This superior skill of SSSA‐based prediction appears to result from a close relationship between salinity variations and the oceanic water cycle, as well as related atmospheric circulation changes and soil moisture feedback. Key Points Heavy rainfall explains the majority of the year‐to‐year variation of summer precipitation in the US Midwest SSS in the tropical Pacific and subtropical North Atlantic equally contribute to skillful predictions of Midwest heavy rain a season ahead Skillful prediction from SSS is realized through tropical‐extratropical teleconnections and local soil moisture feedback</description><subject>Anomalies</subject><subject>Atmospheric circulation</subject><subject>Atmospheric circulation changes</subject><subject>Atmospheric precipitations</subject><subject>Crop production</subject><subject>heavy rainfall</subject><subject>Hydrologic cycle</subject><subject>Hydrological cycle</subject><subject>Local precipitation</subject><subject>long‐lead prediction</subject><subject>Mathematical models</subject><subject>Midwest precipitation</subject><subject>Moisture effects</subject><subject>Precipitation</subject><subject>Precipitation forecasting</subject><subject>Prediction models</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Rainfall forecasting</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Salinity variations</subject><subject>Sea surface</subject><subject>sea surface salinity</subject><subject>Sea surface temperature</subject><subject>Sea surface temperature anomalies</subject><subject>Seasonal forecasting</subject><subject>Seasonal precipitation</subject><subject>Seasons</subject><subject>Soil</subject><subject>Soil moisture</subject><subject>Statistical models</subject><subject>Summer</subject><subject>Surface salinity</subject><subject>Surface temperature</subject><subject>Teleconnection patterns</subject><subject>Temperature anomalies</subject><subject>Tropical climate</subject><subject>Water circulation</subject><subject>Wave trains</subject><subject>Weather forecasting</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqWw4wCW2FIY_yX2ElXQIgWBGrqOXHdCXfJTnISqO47AGTkJQWXBitWMRt97b_QIOWdwxYCbaw6cTxIwWil5QAbMSDnSAPEhGQCYfudxdExOmmYNAAIEG5BV-uqLIu8KmtTVy9fHZ4J2SZ8CLr1rfV3ROqdpV5YYWl8inaJ939GZ9VVui4L6irYrpPOUPvjlFpuW3oW6pCnaXhRy65CmtvCVb3en5KiXNHj2O4dkfnf7PJ6OksfJ_fgmGTkBkRpppiKjtZMLiHOhkMXaCAHxIkalchczuXCgIumixZJblOAQjeZg-quTgoshudj7bkL91vUvZeu6C1UfmfFIaxULZVhPXe4pF-qmCZhnm-BLG3YZg-yny-xvlz3O9_jWF7j7l80msySSIlLiG_V5dI4</recordid><startdate>20220716</startdate><enddate>20220716</enddate><creator>Li, Laifang</creator><creator>Schmitt, Raymond W.</creator><creator>Ummenhofer, Caroline C.</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9163-3967</orcidid><orcidid>https://orcid.org/0000-0002-6721-9002</orcidid></search><sort><creationdate>20220716</creationdate><title>Skillful Long‐Lead Prediction of Summertime Heavy Rainfall in the US Midwest From Sea Surface Salinity</title><author>Li, Laifang ; Schmitt, Raymond W. ; Ummenhofer, Caroline C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3065-8156988c4b07f35e17893307b7e55fc714bc0564c6bd2ae40cee98209c05c4323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anomalies</topic><topic>Atmospheric circulation</topic><topic>Atmospheric circulation changes</topic><topic>Atmospheric precipitations</topic><topic>Crop production</topic><topic>heavy rainfall</topic><topic>Hydrologic cycle</topic><topic>Hydrological cycle</topic><topic>Local precipitation</topic><topic>long‐lead prediction</topic><topic>Mathematical models</topic><topic>Midwest precipitation</topic><topic>Moisture effects</topic><topic>Precipitation</topic><topic>Precipitation forecasting</topic><topic>Prediction models</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Rainfall forecasting</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Salinity variations</topic><topic>Sea surface</topic><topic>sea surface salinity</topic><topic>Sea surface temperature</topic><topic>Sea surface temperature anomalies</topic><topic>Seasonal forecasting</topic><topic>Seasonal precipitation</topic><topic>Seasons</topic><topic>Soil</topic><topic>Soil moisture</topic><topic>Statistical models</topic><topic>Summer</topic><topic>Surface salinity</topic><topic>Surface temperature</topic><topic>Teleconnection patterns</topic><topic>Temperature anomalies</topic><topic>Tropical climate</topic><topic>Water circulation</topic><topic>Wave trains</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Laifang</creatorcontrib><creatorcontrib>Schmitt, Raymond W.</creatorcontrib><creatorcontrib>Ummenhofer, Caroline C.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Laifang</au><au>Schmitt, Raymond W.</au><au>Ummenhofer, Caroline C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Skillful Long‐Lead Prediction of Summertime Heavy Rainfall in the US Midwest From Sea Surface Salinity</atitle><jtitle>Geophysical research letters</jtitle><date>2022-07-16</date><risdate>2022</risdate><volume>49</volume><issue>13</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Summertime heavy rainfall and its resultant floods are among the most harmful natural hazards in the US Midwest, one of the world's primary crop production areas. However, seasonal forecasts of heavy rain, currently based on preseason sea surface temperature anomalies (SSTAs), remain unsatisfactory. Here, we present evidence that sea surface salinity anomalies (SSSAs) over the tropical western Pacific and subtropical North Atlantic are skillful predictors of summer time heavy rainfall one season ahead. A one standard deviation change in tropical western Pacific SSSA is associated with a 1.8 mm day−1 increase in local precipitation, which excites a teleconnection pattern to extratropical North Pacific. Via extratropical air‐sea interaction and long memory of midlatitude SSTA, a wave train favorable for US Midwest heavy rain is induced. Combined with soil moisture feedbacks bridging the springtime North Atlantic salinity, the SSSA‐based statistical prediction model improves Midwest heavy rainfall forecasts by 92%, complementing existing SSTA‐based frameworks. Plain Language Summary Predicting heavy rainfall one season ahead is challenging for the US Midwest, a primary crop production area in the world. In this study, we show a skillful prediction of Midwest heavy rain using sea surface salinity anomalies (SSSAs) in the western tropical Pacific and subtropical North Atlantic. Compared to sea surface temperature anomalies which traditionally form the basis for seasonal precipitation forecasts, our newly identified SSSA‐based predictors improve the accuracy of heavy rainfall prediction by 92%. This superior skill of SSSA‐based prediction appears to result from a close relationship between salinity variations and the oceanic water cycle, as well as related atmospheric circulation changes and soil moisture feedback. Key Points Heavy rainfall explains the majority of the year‐to‐year variation of summer precipitation in the US Midwest SSS in the tropical Pacific and subtropical North Atlantic equally contribute to skillful predictions of Midwest heavy rain a season ahead Skillful prediction from SSS is realized through tropical‐extratropical teleconnections and local soil moisture feedback</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2022GL098554</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9163-3967</orcidid><orcidid>https://orcid.org/0000-0002-6721-9002</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2022-07, Vol.49 (13), p.n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_journals_2688573591
source Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley-Blackwell AGU Digital Library
subjects Anomalies
Atmospheric circulation
Atmospheric circulation changes
Atmospheric precipitations
Crop production
heavy rainfall
Hydrologic cycle
Hydrological cycle
Local precipitation
long‐lead prediction
Mathematical models
Midwest precipitation
Moisture effects
Precipitation
Precipitation forecasting
Prediction models
Rain
Rainfall
Rainfall forecasting
Salinity
Salinity effects
Salinity variations
Sea surface
sea surface salinity
Sea surface temperature
Sea surface temperature anomalies
Seasonal forecasting
Seasonal precipitation
Seasons
Soil
Soil moisture
Statistical models
Summer
Surface salinity
Surface temperature
Teleconnection patterns
Temperature anomalies
Tropical climate
Water circulation
Wave trains
Weather forecasting
title Skillful Long‐Lead Prediction of Summertime Heavy Rainfall in the US Midwest From Sea Surface Salinity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A08%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Skillful%20Long%E2%80%90Lead%20Prediction%20of%20Summertime%20Heavy%20Rainfall%20in%20the%20US%20Midwest%20From%20Sea%20Surface%20Salinity&rft.jtitle=Geophysical%20research%20letters&rft.au=Li,%20Laifang&rft.date=2022-07-16&rft.volume=49&rft.issue=13&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2022GL098554&rft_dat=%3Cproquest_cross%3E2688573591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688573591&rft_id=info:pmid/&rfr_iscdi=true