BENDING OF THIN ELECTROMAGNETOELASTIC PLATES

Main correlations in the theory of bending of thin electromagnetoelastic plates are obtained, in which complex potentials are used. Exact analytical solutions are obtained for the problems of bending an elliptical plate and an infinite plate with an elliptical hole. It is established that no electri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mechanics and technical physics 2022-04, Vol.63 (2), p.308-320
Hauptverfasser: Kaloerov, S. A., Seroshtanov, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 320
container_issue 2
container_start_page 308
container_title Journal of applied mechanics and technical physics
container_volume 63
creator Kaloerov, S. A.
Seroshtanov, A. V.
description Main correlations in the theory of bending of thin electromagnetoelastic plates are obtained, in which complex potentials are used. Exact analytical solutions are obtained for the problems of bending an elliptical plate and an infinite plate with an elliptical hole. It is established that no electric or magnetic inductions arise in the case of a simply connected finite plate under mechanical influences and no mechanical stresses arise under the action of inductions, despite the fact that the piezoelectric effect occurs due to deformations, displacements, and field potentials. The piezoelectric effect in the case of an infinite simply connected plate is always observed and has a significant effect on the values of bending moments. The influence of the physical and mechanical properties of materials and the geometric characteristics of holes on the values of bending moments in the case of a plate with an elliptical hole is studied.
doi_str_mv 10.1134/S0021894422020146
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2688571546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2688571546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-34804fd4c2a58e9917a0f9edffecbc474641f384614b7c6b09b2eef9c8c264623</originalsourceid><addsrcrecordid>eNp1kLFOwzAURS0EEqXwAWyRWAk8Oy-OPYbgtpFCgmiYo8S1ERU0xW4H_r6pgsSAmN5wz7lPuoRcU7ijNML7JQCjQiIyBgwo8hMyoXEShYIzOCWTYxwe83Ny4f0aAKSgyYTcPqjyMS_nQTUL6kVeBqpQWf1SPaXzUtWVKtJlnWfBc5HWanlJzmz74c3Vz52S15mqs0VYVPM8S4tQM-S7MEIBaFeoWRsLIyVNWrDSrKw1utOYIEdqI4GcYpdo3oHsmDFWaqEZR86iKbkZe7eu_9obv2vW_d5thpcN40LECY2RDxQdKe16752xzda9f7buu6HQHEdp_owyOGx0_MBu3oz7bf5fOgAQ0l1C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688571546</pqid></control><display><type>article</type><title>BENDING OF THIN ELECTROMAGNETOELASTIC PLATES</title><source>SpringerNature Journals</source><creator>Kaloerov, S. A. ; Seroshtanov, A. V.</creator><creatorcontrib>Kaloerov, S. A. ; Seroshtanov, A. V.</creatorcontrib><description>Main correlations in the theory of bending of thin electromagnetoelastic plates are obtained, in which complex potentials are used. Exact analytical solutions are obtained for the problems of bending an elliptical plate and an infinite plate with an elliptical hole. It is established that no electric or magnetic inductions arise in the case of a simply connected finite plate under mechanical influences and no mechanical stresses arise under the action of inductions, despite the fact that the piezoelectric effect occurs due to deformations, displacements, and field potentials. The piezoelectric effect in the case of an infinite simply connected plate is always observed and has a significant effect on the values of bending moments. The influence of the physical and mechanical properties of materials and the geometric characteristics of holes on the values of bending moments in the case of a plate with an elliptical hole is studied.</description><identifier>ISSN: 0021-8944</identifier><identifier>EISSN: 1573-8620</identifier><identifier>DOI: 10.1134/S0021894422020146</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Applications of Mathematics ; Bending moments ; Classical and Continuum Physics ; Classical Mechanics ; Deformation effects ; Elliptical plates ; Exact solutions ; Fluid- and Aerodynamics ; Material properties ; Mathematical Modeling and Industrial Mathematics ; Mechanical Engineering ; Mechanical properties ; Physical properties ; Physics ; Physics and Astronomy ; Piezoelectricity</subject><ispartof>Journal of applied mechanics and technical physics, 2022-04, Vol.63 (2), p.308-320</ispartof><rights>Pleiades Publishing, Ltd. 2022</rights><rights>Pleiades Publishing, Ltd. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-34804fd4c2a58e9917a0f9edffecbc474641f384614b7c6b09b2eef9c8c264623</citedby><cites>FETCH-LOGICAL-c246t-34804fd4c2a58e9917a0f9edffecbc474641f384614b7c6b09b2eef9c8c264623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0021894422020146$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0021894422020146$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kaloerov, S. A.</creatorcontrib><creatorcontrib>Seroshtanov, A. V.</creatorcontrib><title>BENDING OF THIN ELECTROMAGNETOELASTIC PLATES</title><title>Journal of applied mechanics and technical physics</title><addtitle>J Appl Mech Tech Phy</addtitle><description>Main correlations in the theory of bending of thin electromagnetoelastic plates are obtained, in which complex potentials are used. Exact analytical solutions are obtained for the problems of bending an elliptical plate and an infinite plate with an elliptical hole. It is established that no electric or magnetic inductions arise in the case of a simply connected finite plate under mechanical influences and no mechanical stresses arise under the action of inductions, despite the fact that the piezoelectric effect occurs due to deformations, displacements, and field potentials. The piezoelectric effect in the case of an infinite simply connected plate is always observed and has a significant effect on the values of bending moments. The influence of the physical and mechanical properties of materials and the geometric characteristics of holes on the values of bending moments in the case of a plate with an elliptical hole is studied.</description><subject>Applications of Mathematics</subject><subject>Bending moments</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Deformation effects</subject><subject>Elliptical plates</subject><subject>Exact solutions</subject><subject>Fluid- and Aerodynamics</subject><subject>Material properties</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Piezoelectricity</subject><issn>0021-8944</issn><issn>1573-8620</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAURS0EEqXwAWyRWAk8Oy-OPYbgtpFCgmiYo8S1ERU0xW4H_r6pgsSAmN5wz7lPuoRcU7ijNML7JQCjQiIyBgwo8hMyoXEShYIzOCWTYxwe83Ny4f0aAKSgyYTcPqjyMS_nQTUL6kVeBqpQWf1SPaXzUtWVKtJlnWfBc5HWanlJzmz74c3Vz52S15mqs0VYVPM8S4tQM-S7MEIBaFeoWRsLIyVNWrDSrKw1utOYIEdqI4GcYpdo3oHsmDFWaqEZR86iKbkZe7eu_9obv2vW_d5thpcN40LECY2RDxQdKe16752xzda9f7buu6HQHEdp_owyOGx0_MBu3oz7bf5fOgAQ0l1C</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Kaloerov, S. A.</creator><creator>Seroshtanov, A. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220401</creationdate><title>BENDING OF THIN ELECTROMAGNETOELASTIC PLATES</title><author>Kaloerov, S. A. ; Seroshtanov, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-34804fd4c2a58e9917a0f9edffecbc474641f384614b7c6b09b2eef9c8c264623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Bending moments</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Deformation effects</topic><topic>Elliptical plates</topic><topic>Exact solutions</topic><topic>Fluid- and Aerodynamics</topic><topic>Material properties</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Piezoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaloerov, S. A.</creatorcontrib><creatorcontrib>Seroshtanov, A. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied mechanics and technical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaloerov, S. A.</au><au>Seroshtanov, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BENDING OF THIN ELECTROMAGNETOELASTIC PLATES</atitle><jtitle>Journal of applied mechanics and technical physics</jtitle><stitle>J Appl Mech Tech Phy</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>63</volume><issue>2</issue><spage>308</spage><epage>320</epage><pages>308-320</pages><issn>0021-8944</issn><eissn>1573-8620</eissn><abstract>Main correlations in the theory of bending of thin electromagnetoelastic plates are obtained, in which complex potentials are used. Exact analytical solutions are obtained for the problems of bending an elliptical plate and an infinite plate with an elliptical hole. It is established that no electric or magnetic inductions arise in the case of a simply connected finite plate under mechanical influences and no mechanical stresses arise under the action of inductions, despite the fact that the piezoelectric effect occurs due to deformations, displacements, and field potentials. The piezoelectric effect in the case of an infinite simply connected plate is always observed and has a significant effect on the values of bending moments. The influence of the physical and mechanical properties of materials and the geometric characteristics of holes on the values of bending moments in the case of a plate with an elliptical hole is studied.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0021894422020146</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8944
ispartof Journal of applied mechanics and technical physics, 2022-04, Vol.63 (2), p.308-320
issn 0021-8944
1573-8620
language eng
recordid cdi_proquest_journals_2688571546
source SpringerNature Journals
subjects Applications of Mathematics
Bending moments
Classical and Continuum Physics
Classical Mechanics
Deformation effects
Elliptical plates
Exact solutions
Fluid- and Aerodynamics
Material properties
Mathematical Modeling and Industrial Mathematics
Mechanical Engineering
Mechanical properties
Physical properties
Physics
Physics and Astronomy
Piezoelectricity
title BENDING OF THIN ELECTROMAGNETOELASTIC PLATES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A21%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BENDING%20OF%20THIN%20ELECTROMAGNETOELASTIC%20PLATES&rft.jtitle=Journal%20of%20applied%20mechanics%20and%20technical%20physics&rft.au=Kaloerov,%20S.%20A.&rft.date=2022-04-01&rft.volume=63&rft.issue=2&rft.spage=308&rft.epage=320&rft.pages=308-320&rft.issn=0021-8944&rft.eissn=1573-8620&rft_id=info:doi/10.1134/S0021894422020146&rft_dat=%3Cproquest_cross%3E2688571546%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688571546&rft_id=info:pmid/&rfr_iscdi=true