A sinter-free future for solid-state battery designs

Ceramic-based solid electrolytes and separators are particularly attractive for use in next-generation batteries as a way to increase the electrochemical stability window and improve safety. However, batteries with higher energy densities require thin membranes comparable in thickness to the polymer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2022-07, Vol.15 (7), p.2927-2936
Hauptverfasser: Hood, Zachary D, Zhu, Yuntong, Miara, Lincoln J, Chang, Won Seok, Simons, Philipp, Rupp, Jennifer L. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2936
container_issue 7
container_start_page 2927
container_title Energy & environmental science
container_volume 15
creator Hood, Zachary D
Zhu, Yuntong
Miara, Lincoln J
Chang, Won Seok
Simons, Philipp
Rupp, Jennifer L. M
description Ceramic-based solid electrolytes and separators are particularly attractive for use in next-generation batteries as a way to increase the electrochemical stability window and improve safety. However, batteries with higher energy densities require thin membranes comparable in thickness to the polymer separators ( e.g. , 1025 m) found in today's Lithium-ion batteries. To date, conventional ceramicelectrolyte processing routes have not been able to achieve this goal as they typically operate on the principle of sintering: going from particle to a densified ceramic body. To overcome this challenge, we provide a blueprint for an alternative cost-effective sequential decomposition synthesis (SDS) approach that uniquely accesses the thickness range required from solid Li oxide-based electrolytes close to those of today's polymer separators and offers immense opportunities for to obtain the desired phase at significantly lower processing temperatures (
doi_str_mv 10.1039/d2ee00279e
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2688520384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2688520384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-9c45324eb8df38f58067d43cd8d202f8c3adae3fde79be81b57760e628b637da3</originalsourceid><addsrcrecordid>eNpF0DtPwzAUBWALgUQpLOxIEWxIAb_tjFUbHlIlFpgtx76GVCUptjP03xMIj-nc4dPR1UHonOAbgll16ykAxlRVcIBmRAleCoXl4e8tK3qMTlLaYCwpVtUM8UWR2i5DLEMEKMKQhzhGH4vUb1tfpmwzFI3NI9kXHlL72qVTdBTsNsHZT87Ry139vHwo10_3j8vFunSM81xWjgtGOTTaB6aD0Fgqz5nz2lNMg3bMegsseFBVA5o0QimJQVLdSKa8ZXN0OfX2KbcmuTaDe3N914HLhmhFNREjuprQLvYfA6RsNv0Qu_EvQ6XWgmKm-aiuJ-Vin1KEYHaxfbdxbwg2X9OZFa3r7-nqEV9MOCb35_6nZZ-6p2lq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688520384</pqid></control><display><type>article</type><title>A sinter-free future for solid-state battery designs</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Hood, Zachary D ; Zhu, Yuntong ; Miara, Lincoln J ; Chang, Won Seok ; Simons, Philipp ; Rupp, Jennifer L. M</creator><creatorcontrib>Hood, Zachary D ; Zhu, Yuntong ; Miara, Lincoln J ; Chang, Won Seok ; Simons, Philipp ; Rupp, Jennifer L. M</creatorcontrib><description>Ceramic-based solid electrolytes and separators are particularly attractive for use in next-generation batteries as a way to increase the electrochemical stability window and improve safety. However, batteries with higher energy densities require thin membranes comparable in thickness to the polymer separators ( e.g. , 1025 m) found in today's Lithium-ion batteries. To date, conventional ceramicelectrolyte processing routes have not been able to achieve this goal as they typically operate on the principle of sintering: going from particle to a densified ceramic body. To overcome this challenge, we provide a blueprint for an alternative cost-effective sequential decomposition synthesis (SDS) approach that uniquely accesses the thickness range required from solid Li oxide-based electrolytes close to those of today's polymer separators and offers immense opportunities for to obtain the desired phase at significantly lower processing temperatures (&lt;700 C) with unique ceramic microstructures. We specifically highlight the SDS processing of Li garnets and disclose basic SDS precursor and ceramic processing concepts that can be adapted to other Li-containing oxides. The newly developed sequential decomposition synthesis (SDS) method permits the fabrication of ceramic solid electrolytes with thickness close to today's polymer separators and offers opportunities to obtain the desired phase at reduced temperatures.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d2ee00279e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Batteries ; Ceramics ; Electrochemistry ; Electrolytes ; Lithium ; Lithium-ion batteries ; Molten salt electrolytes ; Polymers ; Rechargeable batteries ; Separators ; Solid electrolytes ; Thickness</subject><ispartof>Energy &amp; environmental science, 2022-07, Vol.15 (7), p.2927-2936</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-9c45324eb8df38f58067d43cd8d202f8c3adae3fde79be81b57760e628b637da3</citedby><cites>FETCH-LOGICAL-c344t-9c45324eb8df38f58067d43cd8d202f8c3adae3fde79be81b57760e628b637da3</cites><orcidid>0000-0002-2561-8216 ; 0000-0002-5720-4392 ; 0000-0002-4744-8764 ; 0000-0001-5143-3402 ; 0000-0001-7160-0108 ; 0000000171600108 ; 0000000257204392 ; 0000000151433402 ; 0000000225618216 ; 0000000247448764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1872815$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hood, Zachary D</creatorcontrib><creatorcontrib>Zhu, Yuntong</creatorcontrib><creatorcontrib>Miara, Lincoln J</creatorcontrib><creatorcontrib>Chang, Won Seok</creatorcontrib><creatorcontrib>Simons, Philipp</creatorcontrib><creatorcontrib>Rupp, Jennifer L. M</creatorcontrib><title>A sinter-free future for solid-state battery designs</title><title>Energy &amp; environmental science</title><description>Ceramic-based solid electrolytes and separators are particularly attractive for use in next-generation batteries as a way to increase the electrochemical stability window and improve safety. However, batteries with higher energy densities require thin membranes comparable in thickness to the polymer separators ( e.g. , 1025 m) found in today's Lithium-ion batteries. To date, conventional ceramicelectrolyte processing routes have not been able to achieve this goal as they typically operate on the principle of sintering: going from particle to a densified ceramic body. To overcome this challenge, we provide a blueprint for an alternative cost-effective sequential decomposition synthesis (SDS) approach that uniquely accesses the thickness range required from solid Li oxide-based electrolytes close to those of today's polymer separators and offers immense opportunities for to obtain the desired phase at significantly lower processing temperatures (&lt;700 C) with unique ceramic microstructures. We specifically highlight the SDS processing of Li garnets and disclose basic SDS precursor and ceramic processing concepts that can be adapted to other Li-containing oxides. The newly developed sequential decomposition synthesis (SDS) method permits the fabrication of ceramic solid electrolytes with thickness close to today's polymer separators and offers opportunities to obtain the desired phase at reduced temperatures.</description><subject>Batteries</subject><subject>Ceramics</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Molten salt electrolytes</subject><subject>Polymers</subject><subject>Rechargeable batteries</subject><subject>Separators</subject><subject>Solid electrolytes</subject><subject>Thickness</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpF0DtPwzAUBWALgUQpLOxIEWxIAb_tjFUbHlIlFpgtx76GVCUptjP03xMIj-nc4dPR1UHonOAbgll16ykAxlRVcIBmRAleCoXl4e8tK3qMTlLaYCwpVtUM8UWR2i5DLEMEKMKQhzhGH4vUb1tfpmwzFI3NI9kXHlL72qVTdBTsNsHZT87Ry139vHwo10_3j8vFunSM81xWjgtGOTTaB6aD0Fgqz5nz2lNMg3bMegsseFBVA5o0QimJQVLdSKa8ZXN0OfX2KbcmuTaDe3N914HLhmhFNREjuprQLvYfA6RsNv0Qu_EvQ6XWgmKm-aiuJ-Vin1KEYHaxfbdxbwg2X9OZFa3r7-nqEV9MOCb35_6nZZ-6p2lq</recordid><startdate>20220713</startdate><enddate>20220713</enddate><creator>Hood, Zachary D</creator><creator>Zhu, Yuntong</creator><creator>Miara, Lincoln J</creator><creator>Chang, Won Seok</creator><creator>Simons, Philipp</creator><creator>Rupp, Jennifer L. M</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2561-8216</orcidid><orcidid>https://orcid.org/0000-0002-5720-4392</orcidid><orcidid>https://orcid.org/0000-0002-4744-8764</orcidid><orcidid>https://orcid.org/0000-0001-5143-3402</orcidid><orcidid>https://orcid.org/0000-0001-7160-0108</orcidid><orcidid>https://orcid.org/0000000171600108</orcidid><orcidid>https://orcid.org/0000000257204392</orcidid><orcidid>https://orcid.org/0000000151433402</orcidid><orcidid>https://orcid.org/0000000225618216</orcidid><orcidid>https://orcid.org/0000000247448764</orcidid></search><sort><creationdate>20220713</creationdate><title>A sinter-free future for solid-state battery designs</title><author>Hood, Zachary D ; Zhu, Yuntong ; Miara, Lincoln J ; Chang, Won Seok ; Simons, Philipp ; Rupp, Jennifer L. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-9c45324eb8df38f58067d43cd8d202f8c3adae3fde79be81b57760e628b637da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Batteries</topic><topic>Ceramics</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Molten salt electrolytes</topic><topic>Polymers</topic><topic>Rechargeable batteries</topic><topic>Separators</topic><topic>Solid electrolytes</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hood, Zachary D</creatorcontrib><creatorcontrib>Zhu, Yuntong</creatorcontrib><creatorcontrib>Miara, Lincoln J</creatorcontrib><creatorcontrib>Chang, Won Seok</creatorcontrib><creatorcontrib>Simons, Philipp</creatorcontrib><creatorcontrib>Rupp, Jennifer L. M</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hood, Zachary D</au><au>Zhu, Yuntong</au><au>Miara, Lincoln J</au><au>Chang, Won Seok</au><au>Simons, Philipp</au><au>Rupp, Jennifer L. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sinter-free future for solid-state battery designs</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2022-07-13</date><risdate>2022</risdate><volume>15</volume><issue>7</issue><spage>2927</spage><epage>2936</epage><pages>2927-2936</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Ceramic-based solid electrolytes and separators are particularly attractive for use in next-generation batteries as a way to increase the electrochemical stability window and improve safety. However, batteries with higher energy densities require thin membranes comparable in thickness to the polymer separators ( e.g. , 1025 m) found in today's Lithium-ion batteries. To date, conventional ceramicelectrolyte processing routes have not been able to achieve this goal as they typically operate on the principle of sintering: going from particle to a densified ceramic body. To overcome this challenge, we provide a blueprint for an alternative cost-effective sequential decomposition synthesis (SDS) approach that uniquely accesses the thickness range required from solid Li oxide-based electrolytes close to those of today's polymer separators and offers immense opportunities for to obtain the desired phase at significantly lower processing temperatures (&lt;700 C) with unique ceramic microstructures. We specifically highlight the SDS processing of Li garnets and disclose basic SDS precursor and ceramic processing concepts that can be adapted to other Li-containing oxides. The newly developed sequential decomposition synthesis (SDS) method permits the fabrication of ceramic solid electrolytes with thickness close to today's polymer separators and offers opportunities to obtain the desired phase at reduced temperatures.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ee00279e</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2561-8216</orcidid><orcidid>https://orcid.org/0000-0002-5720-4392</orcidid><orcidid>https://orcid.org/0000-0002-4744-8764</orcidid><orcidid>https://orcid.org/0000-0001-5143-3402</orcidid><orcidid>https://orcid.org/0000-0001-7160-0108</orcidid><orcidid>https://orcid.org/0000000171600108</orcidid><orcidid>https://orcid.org/0000000257204392</orcidid><orcidid>https://orcid.org/0000000151433402</orcidid><orcidid>https://orcid.org/0000000225618216</orcidid><orcidid>https://orcid.org/0000000247448764</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2022-07, Vol.15 (7), p.2927-2936
issn 1754-5692
1754-5706
language eng
recordid cdi_proquest_journals_2688520384
source Royal Society Of Chemistry Journals 2008-
subjects Batteries
Ceramics
Electrochemistry
Electrolytes
Lithium
Lithium-ion batteries
Molten salt electrolytes
Polymers
Rechargeable batteries
Separators
Solid electrolytes
Thickness
title A sinter-free future for solid-state battery designs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A24%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sinter-free%20future%20for%20solid-state%20battery%20designs&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Hood,%20Zachary%20D&rft.date=2022-07-13&rft.volume=15&rft.issue=7&rft.spage=2927&rft.epage=2936&rft.pages=2927-2936&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d2ee00279e&rft_dat=%3Cproquest_osti_%3E2688520384%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688520384&rft_id=info:pmid/&rfr_iscdi=true