A sinter-free future for solid-state battery designs
Ceramic-based solid electrolytes and separators are particularly attractive for use in next-generation batteries as a way to increase the electrochemical stability window and improve safety. However, batteries with higher energy densities require thin membranes comparable in thickness to the polymer...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2022-07, Vol.15 (7), p.2927-2936 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2936 |
---|---|
container_issue | 7 |
container_start_page | 2927 |
container_title | Energy & environmental science |
container_volume | 15 |
creator | Hood, Zachary D Zhu, Yuntong Miara, Lincoln J Chang, Won Seok Simons, Philipp Rupp, Jennifer L. M |
description | Ceramic-based solid electrolytes and separators are particularly attractive for use in next-generation batteries as a way to increase the electrochemical stability window and improve safety. However, batteries with higher energy densities require thin membranes comparable in thickness to the polymer separators (
e.g.
, 1025 m) found in today's Lithium-ion batteries. To date, conventional ceramicelectrolyte processing routes have not been able to achieve this goal as they typically operate on the principle of sintering: going from particle to a densified ceramic body. To overcome this challenge, we provide a blueprint for an alternative cost-effective sequential decomposition synthesis (SDS) approach that uniquely accesses the thickness range required from solid Li oxide-based electrolytes close to those of today's polymer separators and offers immense opportunities for to obtain the desired phase at significantly lower processing temperatures ( |
doi_str_mv | 10.1039/d2ee00279e |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2688520384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2688520384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-9c45324eb8df38f58067d43cd8d202f8c3adae3fde79be81b57760e628b637da3</originalsourceid><addsrcrecordid>eNpF0DtPwzAUBWALgUQpLOxIEWxIAb_tjFUbHlIlFpgtx76GVCUptjP03xMIj-nc4dPR1UHonOAbgll16ykAxlRVcIBmRAleCoXl4e8tK3qMTlLaYCwpVtUM8UWR2i5DLEMEKMKQhzhGH4vUb1tfpmwzFI3NI9kXHlL72qVTdBTsNsHZT87Ry139vHwo10_3j8vFunSM81xWjgtGOTTaB6aD0Fgqz5nz2lNMg3bMegsseFBVA5o0QimJQVLdSKa8ZXN0OfX2KbcmuTaDe3N914HLhmhFNREjuprQLvYfA6RsNv0Qu_EvQ6XWgmKm-aiuJ-Vin1KEYHaxfbdxbwg2X9OZFa3r7-nqEV9MOCb35_6nZZ-6p2lq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688520384</pqid></control><display><type>article</type><title>A sinter-free future for solid-state battery designs</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Hood, Zachary D ; Zhu, Yuntong ; Miara, Lincoln J ; Chang, Won Seok ; Simons, Philipp ; Rupp, Jennifer L. M</creator><creatorcontrib>Hood, Zachary D ; Zhu, Yuntong ; Miara, Lincoln J ; Chang, Won Seok ; Simons, Philipp ; Rupp, Jennifer L. M</creatorcontrib><description>Ceramic-based solid electrolytes and separators are particularly attractive for use in next-generation batteries as a way to increase the electrochemical stability window and improve safety. However, batteries with higher energy densities require thin membranes comparable in thickness to the polymer separators (
e.g.
, 1025 m) found in today's Lithium-ion batteries. To date, conventional ceramicelectrolyte processing routes have not been able to achieve this goal as they typically operate on the principle of sintering: going from particle to a densified ceramic body. To overcome this challenge, we provide a blueprint for an alternative cost-effective sequential decomposition synthesis (SDS) approach that uniquely accesses the thickness range required from solid Li oxide-based electrolytes close to those of today's polymer separators and offers immense opportunities for to obtain the desired phase at significantly lower processing temperatures (<700 C) with unique ceramic microstructures. We specifically highlight the SDS processing of Li garnets and disclose basic SDS precursor and ceramic processing concepts that can be adapted to other Li-containing oxides.
The newly developed sequential decomposition synthesis (SDS) method permits the fabrication of ceramic solid electrolytes with thickness close to today's polymer separators and offers opportunities to obtain the desired phase at reduced temperatures.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d2ee00279e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Batteries ; Ceramics ; Electrochemistry ; Electrolytes ; Lithium ; Lithium-ion batteries ; Molten salt electrolytes ; Polymers ; Rechargeable batteries ; Separators ; Solid electrolytes ; Thickness</subject><ispartof>Energy & environmental science, 2022-07, Vol.15 (7), p.2927-2936</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-9c45324eb8df38f58067d43cd8d202f8c3adae3fde79be81b57760e628b637da3</citedby><cites>FETCH-LOGICAL-c344t-9c45324eb8df38f58067d43cd8d202f8c3adae3fde79be81b57760e628b637da3</cites><orcidid>0000-0002-2561-8216 ; 0000-0002-5720-4392 ; 0000-0002-4744-8764 ; 0000-0001-5143-3402 ; 0000-0001-7160-0108 ; 0000000171600108 ; 0000000257204392 ; 0000000151433402 ; 0000000225618216 ; 0000000247448764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1872815$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hood, Zachary D</creatorcontrib><creatorcontrib>Zhu, Yuntong</creatorcontrib><creatorcontrib>Miara, Lincoln J</creatorcontrib><creatorcontrib>Chang, Won Seok</creatorcontrib><creatorcontrib>Simons, Philipp</creatorcontrib><creatorcontrib>Rupp, Jennifer L. M</creatorcontrib><title>A sinter-free future for solid-state battery designs</title><title>Energy & environmental science</title><description>Ceramic-based solid electrolytes and separators are particularly attractive for use in next-generation batteries as a way to increase the electrochemical stability window and improve safety. However, batteries with higher energy densities require thin membranes comparable in thickness to the polymer separators (
e.g.
, 1025 m) found in today's Lithium-ion batteries. To date, conventional ceramicelectrolyte processing routes have not been able to achieve this goal as they typically operate on the principle of sintering: going from particle to a densified ceramic body. To overcome this challenge, we provide a blueprint for an alternative cost-effective sequential decomposition synthesis (SDS) approach that uniquely accesses the thickness range required from solid Li oxide-based electrolytes close to those of today's polymer separators and offers immense opportunities for to obtain the desired phase at significantly lower processing temperatures (<700 C) with unique ceramic microstructures. We specifically highlight the SDS processing of Li garnets and disclose basic SDS precursor and ceramic processing concepts that can be adapted to other Li-containing oxides.
The newly developed sequential decomposition synthesis (SDS) method permits the fabrication of ceramic solid electrolytes with thickness close to today's polymer separators and offers opportunities to obtain the desired phase at reduced temperatures.</description><subject>Batteries</subject><subject>Ceramics</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Molten salt electrolytes</subject><subject>Polymers</subject><subject>Rechargeable batteries</subject><subject>Separators</subject><subject>Solid electrolytes</subject><subject>Thickness</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpF0DtPwzAUBWALgUQpLOxIEWxIAb_tjFUbHlIlFpgtx76GVCUptjP03xMIj-nc4dPR1UHonOAbgll16ykAxlRVcIBmRAleCoXl4e8tK3qMTlLaYCwpVtUM8UWR2i5DLEMEKMKQhzhGH4vUb1tfpmwzFI3NI9kXHlL72qVTdBTsNsHZT87Ry139vHwo10_3j8vFunSM81xWjgtGOTTaB6aD0Fgqz5nz2lNMg3bMegsseFBVA5o0QimJQVLdSKa8ZXN0OfX2KbcmuTaDe3N914HLhmhFNREjuprQLvYfA6RsNv0Qu_EvQ6XWgmKm-aiuJ-Vin1KEYHaxfbdxbwg2X9OZFa3r7-nqEV9MOCb35_6nZZ-6p2lq</recordid><startdate>20220713</startdate><enddate>20220713</enddate><creator>Hood, Zachary D</creator><creator>Zhu, Yuntong</creator><creator>Miara, Lincoln J</creator><creator>Chang, Won Seok</creator><creator>Simons, Philipp</creator><creator>Rupp, Jennifer L. M</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2561-8216</orcidid><orcidid>https://orcid.org/0000-0002-5720-4392</orcidid><orcidid>https://orcid.org/0000-0002-4744-8764</orcidid><orcidid>https://orcid.org/0000-0001-5143-3402</orcidid><orcidid>https://orcid.org/0000-0001-7160-0108</orcidid><orcidid>https://orcid.org/0000000171600108</orcidid><orcidid>https://orcid.org/0000000257204392</orcidid><orcidid>https://orcid.org/0000000151433402</orcidid><orcidid>https://orcid.org/0000000225618216</orcidid><orcidid>https://orcid.org/0000000247448764</orcidid></search><sort><creationdate>20220713</creationdate><title>A sinter-free future for solid-state battery designs</title><author>Hood, Zachary D ; Zhu, Yuntong ; Miara, Lincoln J ; Chang, Won Seok ; Simons, Philipp ; Rupp, Jennifer L. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-9c45324eb8df38f58067d43cd8d202f8c3adae3fde79be81b57760e628b637da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Batteries</topic><topic>Ceramics</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Molten salt electrolytes</topic><topic>Polymers</topic><topic>Rechargeable batteries</topic><topic>Separators</topic><topic>Solid electrolytes</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hood, Zachary D</creatorcontrib><creatorcontrib>Zhu, Yuntong</creatorcontrib><creatorcontrib>Miara, Lincoln J</creatorcontrib><creatorcontrib>Chang, Won Seok</creatorcontrib><creatorcontrib>Simons, Philipp</creatorcontrib><creatorcontrib>Rupp, Jennifer L. M</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hood, Zachary D</au><au>Zhu, Yuntong</au><au>Miara, Lincoln J</au><au>Chang, Won Seok</au><au>Simons, Philipp</au><au>Rupp, Jennifer L. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sinter-free future for solid-state battery designs</atitle><jtitle>Energy & environmental science</jtitle><date>2022-07-13</date><risdate>2022</risdate><volume>15</volume><issue>7</issue><spage>2927</spage><epage>2936</epage><pages>2927-2936</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Ceramic-based solid electrolytes and separators are particularly attractive for use in next-generation batteries as a way to increase the electrochemical stability window and improve safety. However, batteries with higher energy densities require thin membranes comparable in thickness to the polymer separators (
e.g.
, 1025 m) found in today's Lithium-ion batteries. To date, conventional ceramicelectrolyte processing routes have not been able to achieve this goal as they typically operate on the principle of sintering: going from particle to a densified ceramic body. To overcome this challenge, we provide a blueprint for an alternative cost-effective sequential decomposition synthesis (SDS) approach that uniquely accesses the thickness range required from solid Li oxide-based electrolytes close to those of today's polymer separators and offers immense opportunities for to obtain the desired phase at significantly lower processing temperatures (<700 C) with unique ceramic microstructures. We specifically highlight the SDS processing of Li garnets and disclose basic SDS precursor and ceramic processing concepts that can be adapted to other Li-containing oxides.
The newly developed sequential decomposition synthesis (SDS) method permits the fabrication of ceramic solid electrolytes with thickness close to today's polymer separators and offers opportunities to obtain the desired phase at reduced temperatures.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ee00279e</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2561-8216</orcidid><orcidid>https://orcid.org/0000-0002-5720-4392</orcidid><orcidid>https://orcid.org/0000-0002-4744-8764</orcidid><orcidid>https://orcid.org/0000-0001-5143-3402</orcidid><orcidid>https://orcid.org/0000-0001-7160-0108</orcidid><orcidid>https://orcid.org/0000000171600108</orcidid><orcidid>https://orcid.org/0000000257204392</orcidid><orcidid>https://orcid.org/0000000151433402</orcidid><orcidid>https://orcid.org/0000000225618216</orcidid><orcidid>https://orcid.org/0000000247448764</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2022-07, Vol.15 (7), p.2927-2936 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_proquest_journals_2688520384 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Batteries Ceramics Electrochemistry Electrolytes Lithium Lithium-ion batteries Molten salt electrolytes Polymers Rechargeable batteries Separators Solid electrolytes Thickness |
title | A sinter-free future for solid-state battery designs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A24%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sinter-free%20future%20for%20solid-state%20battery%20designs&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Hood,%20Zachary%20D&rft.date=2022-07-13&rft.volume=15&rft.issue=7&rft.spage=2927&rft.epage=2936&rft.pages=2927-2936&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d2ee00279e&rft_dat=%3Cproquest_osti_%3E2688520384%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688520384&rft_id=info:pmid/&rfr_iscdi=true |