Dual inhibition of glycolysis and oxidative phosphorylation by aptamer-based artificial enzyme for synergistic cancer therapy
Dual inhibition of glycolysis and oxidative phosphorylation (OXPHOS) can break the metabolic plasticity of cancer cells to inhibit most energy supply and lead to effective cancer therapy. However, the pharmacokinetic difference among drugs hinders these two inhibitions to realize a uniform temporal...
Gespeichert in:
Veröffentlicht in: | Nano research 2022-07, Vol.15 (7), p.6278-6287 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6287 |
---|---|
container_issue | 7 |
container_start_page | 6278 |
container_title | Nano research |
container_volume | 15 |
creator | Fang, Xiao Yuan, Meng Dai, Junduan Lin, Qianying Lin, Yuhong Wang, Wenli Jiang, Yifan Wang, Haihui Zhao, Fang Wu, Junye Bai, Shumeng Lu, Chunhua Yang, Huanghao |
description | Dual inhibition of glycolysis and oxidative phosphorylation (OXPHOS) can break the metabolic plasticity of cancer cells to inhibit most energy supply and lead to effective cancer therapy. However, the pharmacokinetic difference among drugs hinders these two inhibitions to realize a uniform temporal and spatial distribution. Herein, we report an aptamer-based artificial enzyme for simultaneous dual inhibition of glycolysis and OXPHOS, which is constructed by arginine aptamer modified carbon-dots-doped graphitic carbon nitride (AptCCN). AptCCN can circularly capture intracellular arginine attribute to the specific binding ability of arginine aptamers to arginine, and further catalyze the oxidation of enriched arginine to nitric oxide (NO) under red light irradiation.
In vitro
and
in vivo
experiments showed that arginine depletion and NO stress could inhibit glycolysis and OXPHOS, leading to energy blockage and apoptosis of cancer cells. The presented aptamer-based artificial enzyme strategy provides a new path for cell pathway regulation and synergistic cancer therapy. |
doi_str_mv | 10.1007/s12274-022-4237-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2688285453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2688285453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-db025ab0cc06134217fc21a24fec271627f38d548d13140becfe7ae92254e36b3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAczSZzX70KPUTCl70HLLZSZuy3azJVlzB_25qFU8OhMnhed-Bh5BzwS8F5-VVFAClZByASchKBgdkImazivE0h79_AfKYnMS45rwAIasJ-bzZ6pa6buVqNzjfUW_psh2Nb8foItVdQ_27a_Tg3pD2Kx_TC2Orv9l6pLof9AYDq3XEhuowOOuMS5XYfYwbpNYHGscOw9LFwRlqdGcw0GGFQffjKTmyuo149rOn5OXu9nn-wBZP94_z6wUzmSgG1tQccl1zY3ghMgmitAaEBmnRQCkKKG1WNbmsGpEJyWs0FkuNM4BcYlbU2ZRc7Hv74F-3GAe19tvQpZMKiqqCKpd5liixp0zwMQa0qg9uo8OoBFc7y2pvWSXLamdZQcrAPhMT2y0x_DX_H_oCoTyCag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688285453</pqid></control><display><type>article</type><title>Dual inhibition of glycolysis and oxidative phosphorylation by aptamer-based artificial enzyme for synergistic cancer therapy</title><source>SpringerNature Journals</source><creator>Fang, Xiao ; Yuan, Meng ; Dai, Junduan ; Lin, Qianying ; Lin, Yuhong ; Wang, Wenli ; Jiang, Yifan ; Wang, Haihui ; Zhao, Fang ; Wu, Junye ; Bai, Shumeng ; Lu, Chunhua ; Yang, Huanghao</creator><creatorcontrib>Fang, Xiao ; Yuan, Meng ; Dai, Junduan ; Lin, Qianying ; Lin, Yuhong ; Wang, Wenli ; Jiang, Yifan ; Wang, Haihui ; Zhao, Fang ; Wu, Junye ; Bai, Shumeng ; Lu, Chunhua ; Yang, Huanghao</creatorcontrib><description>Dual inhibition of glycolysis and oxidative phosphorylation (OXPHOS) can break the metabolic plasticity of cancer cells to inhibit most energy supply and lead to effective cancer therapy. However, the pharmacokinetic difference among drugs hinders these two inhibitions to realize a uniform temporal and spatial distribution. Herein, we report an aptamer-based artificial enzyme for simultaneous dual inhibition of glycolysis and OXPHOS, which is constructed by arginine aptamer modified carbon-dots-doped graphitic carbon nitride (AptCCN). AptCCN can circularly capture intracellular arginine attribute to the specific binding ability of arginine aptamers to arginine, and further catalyze the oxidation of enriched arginine to nitric oxide (NO) under red light irradiation.
In vitro
and
in vivo
experiments showed that arginine depletion and NO stress could inhibit glycolysis and OXPHOS, leading to energy blockage and apoptosis of cancer cells. The presented aptamer-based artificial enzyme strategy provides a new path for cell pathway regulation and synergistic cancer therapy.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-022-4237-2</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Apoptosis ; Aptamers ; Arginine ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Cancer ; Cancer therapies ; Carbon ; Carbon dots ; Carbon nitride ; Chemistry and Materials Science ; Condensed Matter Physics ; Depletion ; Drug resistance ; Enzymes ; Glycolysis ; Irradiation ; Kinases ; Light irradiation ; Materials Science ; Metabolism ; Metabolites ; Nanomaterials ; Nanotechnology ; Nitric oxide ; Oxidation ; Oxidative phosphorylation ; Pharmacokinetics ; Phosphorylation ; Radiation ; Research Article ; Spatial distribution ; Therapy ; Tumors</subject><ispartof>Nano research, 2022-07, Vol.15 (7), p.6278-6287</ispartof><rights>Tsinghua University Press 2022</rights><rights>Tsinghua University Press 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-db025ab0cc06134217fc21a24fec271627f38d548d13140becfe7ae92254e36b3</citedby><cites>FETCH-LOGICAL-c316t-db025ab0cc06134217fc21a24fec271627f38d548d13140becfe7ae92254e36b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-022-4237-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-022-4237-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Fang, Xiao</creatorcontrib><creatorcontrib>Yuan, Meng</creatorcontrib><creatorcontrib>Dai, Junduan</creatorcontrib><creatorcontrib>Lin, Qianying</creatorcontrib><creatorcontrib>Lin, Yuhong</creatorcontrib><creatorcontrib>Wang, Wenli</creatorcontrib><creatorcontrib>Jiang, Yifan</creatorcontrib><creatorcontrib>Wang, Haihui</creatorcontrib><creatorcontrib>Zhao, Fang</creatorcontrib><creatorcontrib>Wu, Junye</creatorcontrib><creatorcontrib>Bai, Shumeng</creatorcontrib><creatorcontrib>Lu, Chunhua</creatorcontrib><creatorcontrib>Yang, Huanghao</creatorcontrib><title>Dual inhibition of glycolysis and oxidative phosphorylation by aptamer-based artificial enzyme for synergistic cancer therapy</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Dual inhibition of glycolysis and oxidative phosphorylation (OXPHOS) can break the metabolic plasticity of cancer cells to inhibit most energy supply and lead to effective cancer therapy. However, the pharmacokinetic difference among drugs hinders these two inhibitions to realize a uniform temporal and spatial distribution. Herein, we report an aptamer-based artificial enzyme for simultaneous dual inhibition of glycolysis and OXPHOS, which is constructed by arginine aptamer modified carbon-dots-doped graphitic carbon nitride (AptCCN). AptCCN can circularly capture intracellular arginine attribute to the specific binding ability of arginine aptamers to arginine, and further catalyze the oxidation of enriched arginine to nitric oxide (NO) under red light irradiation.
In vitro
and
in vivo
experiments showed that arginine depletion and NO stress could inhibit glycolysis and OXPHOS, leading to energy blockage and apoptosis of cancer cells. The presented aptamer-based artificial enzyme strategy provides a new path for cell pathway regulation and synergistic cancer therapy.</description><subject>Apoptosis</subject><subject>Aptamers</subject><subject>Arginine</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Carbon</subject><subject>Carbon dots</subject><subject>Carbon nitride</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Depletion</subject><subject>Drug resistance</subject><subject>Enzymes</subject><subject>Glycolysis</subject><subject>Irradiation</subject><subject>Kinases</subject><subject>Light irradiation</subject><subject>Materials Science</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>Nitric oxide</subject><subject>Oxidation</subject><subject>Oxidative phosphorylation</subject><subject>Pharmacokinetics</subject><subject>Phosphorylation</subject><subject>Radiation</subject><subject>Research Article</subject><subject>Spatial distribution</subject><subject>Therapy</subject><subject>Tumors</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wFvAczSZzX70KPUTCl70HLLZSZuy3azJVlzB_25qFU8OhMnhed-Bh5BzwS8F5-VVFAClZByASchKBgdkImazivE0h79_AfKYnMS45rwAIasJ-bzZ6pa6buVqNzjfUW_psh2Nb8foItVdQ_27a_Tg3pD2Kx_TC2Orv9l6pLof9AYDq3XEhuowOOuMS5XYfYwbpNYHGscOw9LFwRlqdGcw0GGFQffjKTmyuo149rOn5OXu9nn-wBZP94_z6wUzmSgG1tQccl1zY3ghMgmitAaEBmnRQCkKKG1WNbmsGpEJyWs0FkuNM4BcYlbU2ZRc7Hv74F-3GAe19tvQpZMKiqqCKpd5liixp0zwMQa0qg9uo8OoBFc7y2pvWSXLamdZQcrAPhMT2y0x_DX_H_oCoTyCag</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Fang, Xiao</creator><creator>Yuan, Meng</creator><creator>Dai, Junduan</creator><creator>Lin, Qianying</creator><creator>Lin, Yuhong</creator><creator>Wang, Wenli</creator><creator>Jiang, Yifan</creator><creator>Wang, Haihui</creator><creator>Zhao, Fang</creator><creator>Wu, Junye</creator><creator>Bai, Shumeng</creator><creator>Lu, Chunhua</creator><creator>Yang, Huanghao</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20220701</creationdate><title>Dual inhibition of glycolysis and oxidative phosphorylation by aptamer-based artificial enzyme for synergistic cancer therapy</title><author>Fang, Xiao ; Yuan, Meng ; Dai, Junduan ; Lin, Qianying ; Lin, Yuhong ; Wang, Wenli ; Jiang, Yifan ; Wang, Haihui ; Zhao, Fang ; Wu, Junye ; Bai, Shumeng ; Lu, Chunhua ; Yang, Huanghao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-db025ab0cc06134217fc21a24fec271627f38d548d13140becfe7ae92254e36b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apoptosis</topic><topic>Aptamers</topic><topic>Arginine</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Carbon</topic><topic>Carbon dots</topic><topic>Carbon nitride</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Depletion</topic><topic>Drug resistance</topic><topic>Enzymes</topic><topic>Glycolysis</topic><topic>Irradiation</topic><topic>Kinases</topic><topic>Light irradiation</topic><topic>Materials Science</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>Nitric oxide</topic><topic>Oxidation</topic><topic>Oxidative phosphorylation</topic><topic>Pharmacokinetics</topic><topic>Phosphorylation</topic><topic>Radiation</topic><topic>Research Article</topic><topic>Spatial distribution</topic><topic>Therapy</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Xiao</creatorcontrib><creatorcontrib>Yuan, Meng</creatorcontrib><creatorcontrib>Dai, Junduan</creatorcontrib><creatorcontrib>Lin, Qianying</creatorcontrib><creatorcontrib>Lin, Yuhong</creatorcontrib><creatorcontrib>Wang, Wenli</creatorcontrib><creatorcontrib>Jiang, Yifan</creatorcontrib><creatorcontrib>Wang, Haihui</creatorcontrib><creatorcontrib>Zhao, Fang</creatorcontrib><creatorcontrib>Wu, Junye</creatorcontrib><creatorcontrib>Bai, Shumeng</creatorcontrib><creatorcontrib>Lu, Chunhua</creatorcontrib><creatorcontrib>Yang, Huanghao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Xiao</au><au>Yuan, Meng</au><au>Dai, Junduan</au><au>Lin, Qianying</au><au>Lin, Yuhong</au><au>Wang, Wenli</au><au>Jiang, Yifan</au><au>Wang, Haihui</au><au>Zhao, Fang</au><au>Wu, Junye</au><au>Bai, Shumeng</au><au>Lu, Chunhua</au><au>Yang, Huanghao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual inhibition of glycolysis and oxidative phosphorylation by aptamer-based artificial enzyme for synergistic cancer therapy</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>15</volume><issue>7</issue><spage>6278</spage><epage>6287</epage><pages>6278-6287</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Dual inhibition of glycolysis and oxidative phosphorylation (OXPHOS) can break the metabolic plasticity of cancer cells to inhibit most energy supply and lead to effective cancer therapy. However, the pharmacokinetic difference among drugs hinders these two inhibitions to realize a uniform temporal and spatial distribution. Herein, we report an aptamer-based artificial enzyme for simultaneous dual inhibition of glycolysis and OXPHOS, which is constructed by arginine aptamer modified carbon-dots-doped graphitic carbon nitride (AptCCN). AptCCN can circularly capture intracellular arginine attribute to the specific binding ability of arginine aptamers to arginine, and further catalyze the oxidation of enriched arginine to nitric oxide (NO) under red light irradiation.
In vitro
and
in vivo
experiments showed that arginine depletion and NO stress could inhibit glycolysis and OXPHOS, leading to energy blockage and apoptosis of cancer cells. The presented aptamer-based artificial enzyme strategy provides a new path for cell pathway regulation and synergistic cancer therapy.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-022-4237-2</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2022-07, Vol.15 (7), p.6278-6287 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2688285453 |
source | SpringerNature Journals |
subjects | Apoptosis Aptamers Arginine Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Cancer Cancer therapies Carbon Carbon dots Carbon nitride Chemistry and Materials Science Condensed Matter Physics Depletion Drug resistance Enzymes Glycolysis Irradiation Kinases Light irradiation Materials Science Metabolism Metabolites Nanomaterials Nanotechnology Nitric oxide Oxidation Oxidative phosphorylation Pharmacokinetics Phosphorylation Radiation Research Article Spatial distribution Therapy Tumors |
title | Dual inhibition of glycolysis and oxidative phosphorylation by aptamer-based artificial enzyme for synergistic cancer therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T08%3A37%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20inhibition%20of%20glycolysis%20and%20oxidative%20phosphorylation%20by%20aptamer-based%20artificial%20enzyme%20for%20synergistic%20cancer%20therapy&rft.jtitle=Nano%20research&rft.au=Fang,%20Xiao&rft.date=2022-07-01&rft.volume=15&rft.issue=7&rft.spage=6278&rft.epage=6287&rft.pages=6278-6287&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-022-4237-2&rft_dat=%3Cproquest_cross%3E2688285453%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688285453&rft_id=info:pmid/&rfr_iscdi=true |