Dual inhibition of glycolysis and oxidative phosphorylation by aptamer-based artificial enzyme for synergistic cancer therapy

Dual inhibition of glycolysis and oxidative phosphorylation (OXPHOS) can break the metabolic plasticity of cancer cells to inhibit most energy supply and lead to effective cancer therapy. However, the pharmacokinetic difference among drugs hinders these two inhibitions to realize a uniform temporal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2022-07, Vol.15 (7), p.6278-6287
Hauptverfasser: Fang, Xiao, Yuan, Meng, Dai, Junduan, Lin, Qianying, Lin, Yuhong, Wang, Wenli, Jiang, Yifan, Wang, Haihui, Zhao, Fang, Wu, Junye, Bai, Shumeng, Lu, Chunhua, Yang, Huanghao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6287
container_issue 7
container_start_page 6278
container_title Nano research
container_volume 15
creator Fang, Xiao
Yuan, Meng
Dai, Junduan
Lin, Qianying
Lin, Yuhong
Wang, Wenli
Jiang, Yifan
Wang, Haihui
Zhao, Fang
Wu, Junye
Bai, Shumeng
Lu, Chunhua
Yang, Huanghao
description Dual inhibition of glycolysis and oxidative phosphorylation (OXPHOS) can break the metabolic plasticity of cancer cells to inhibit most energy supply and lead to effective cancer therapy. However, the pharmacokinetic difference among drugs hinders these two inhibitions to realize a uniform temporal and spatial distribution. Herein, we report an aptamer-based artificial enzyme for simultaneous dual inhibition of glycolysis and OXPHOS, which is constructed by arginine aptamer modified carbon-dots-doped graphitic carbon nitride (AptCCN). AptCCN can circularly capture intracellular arginine attribute to the specific binding ability of arginine aptamers to arginine, and further catalyze the oxidation of enriched arginine to nitric oxide (NO) under red light irradiation. In vitro and in vivo experiments showed that arginine depletion and NO stress could inhibit glycolysis and OXPHOS, leading to energy blockage and apoptosis of cancer cells. The presented aptamer-based artificial enzyme strategy provides a new path for cell pathway regulation and synergistic cancer therapy.
doi_str_mv 10.1007/s12274-022-4237-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2688285453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2688285453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-db025ab0cc06134217fc21a24fec271627f38d548d13140becfe7ae92254e36b3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAczSZzX70KPUTCl70HLLZSZuy3azJVlzB_25qFU8OhMnhed-Bh5BzwS8F5-VVFAClZByASchKBgdkImazivE0h79_AfKYnMS45rwAIasJ-bzZ6pa6buVqNzjfUW_psh2Nb8foItVdQ_27a_Tg3pD2Kx_TC2Orv9l6pLof9AYDq3XEhuowOOuMS5XYfYwbpNYHGscOw9LFwRlqdGcw0GGFQffjKTmyuo149rOn5OXu9nn-wBZP94_z6wUzmSgG1tQccl1zY3ghMgmitAaEBmnRQCkKKG1WNbmsGpEJyWs0FkuNM4BcYlbU2ZRc7Hv74F-3GAe19tvQpZMKiqqCKpd5liixp0zwMQa0qg9uo8OoBFc7y2pvWSXLamdZQcrAPhMT2y0x_DX_H_oCoTyCag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688285453</pqid></control><display><type>article</type><title>Dual inhibition of glycolysis and oxidative phosphorylation by aptamer-based artificial enzyme for synergistic cancer therapy</title><source>SpringerNature Journals</source><creator>Fang, Xiao ; Yuan, Meng ; Dai, Junduan ; Lin, Qianying ; Lin, Yuhong ; Wang, Wenli ; Jiang, Yifan ; Wang, Haihui ; Zhao, Fang ; Wu, Junye ; Bai, Shumeng ; Lu, Chunhua ; Yang, Huanghao</creator><creatorcontrib>Fang, Xiao ; Yuan, Meng ; Dai, Junduan ; Lin, Qianying ; Lin, Yuhong ; Wang, Wenli ; Jiang, Yifan ; Wang, Haihui ; Zhao, Fang ; Wu, Junye ; Bai, Shumeng ; Lu, Chunhua ; Yang, Huanghao</creatorcontrib><description>Dual inhibition of glycolysis and oxidative phosphorylation (OXPHOS) can break the metabolic plasticity of cancer cells to inhibit most energy supply and lead to effective cancer therapy. However, the pharmacokinetic difference among drugs hinders these two inhibitions to realize a uniform temporal and spatial distribution. Herein, we report an aptamer-based artificial enzyme for simultaneous dual inhibition of glycolysis and OXPHOS, which is constructed by arginine aptamer modified carbon-dots-doped graphitic carbon nitride (AptCCN). AptCCN can circularly capture intracellular arginine attribute to the specific binding ability of arginine aptamers to arginine, and further catalyze the oxidation of enriched arginine to nitric oxide (NO) under red light irradiation. In vitro and in vivo experiments showed that arginine depletion and NO stress could inhibit glycolysis and OXPHOS, leading to energy blockage and apoptosis of cancer cells. The presented aptamer-based artificial enzyme strategy provides a new path for cell pathway regulation and synergistic cancer therapy.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-022-4237-2</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Apoptosis ; Aptamers ; Arginine ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Cancer ; Cancer therapies ; Carbon ; Carbon dots ; Carbon nitride ; Chemistry and Materials Science ; Condensed Matter Physics ; Depletion ; Drug resistance ; Enzymes ; Glycolysis ; Irradiation ; Kinases ; Light irradiation ; Materials Science ; Metabolism ; Metabolites ; Nanomaterials ; Nanotechnology ; Nitric oxide ; Oxidation ; Oxidative phosphorylation ; Pharmacokinetics ; Phosphorylation ; Radiation ; Research Article ; Spatial distribution ; Therapy ; Tumors</subject><ispartof>Nano research, 2022-07, Vol.15 (7), p.6278-6287</ispartof><rights>Tsinghua University Press 2022</rights><rights>Tsinghua University Press 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-db025ab0cc06134217fc21a24fec271627f38d548d13140becfe7ae92254e36b3</citedby><cites>FETCH-LOGICAL-c316t-db025ab0cc06134217fc21a24fec271627f38d548d13140becfe7ae92254e36b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-022-4237-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-022-4237-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Fang, Xiao</creatorcontrib><creatorcontrib>Yuan, Meng</creatorcontrib><creatorcontrib>Dai, Junduan</creatorcontrib><creatorcontrib>Lin, Qianying</creatorcontrib><creatorcontrib>Lin, Yuhong</creatorcontrib><creatorcontrib>Wang, Wenli</creatorcontrib><creatorcontrib>Jiang, Yifan</creatorcontrib><creatorcontrib>Wang, Haihui</creatorcontrib><creatorcontrib>Zhao, Fang</creatorcontrib><creatorcontrib>Wu, Junye</creatorcontrib><creatorcontrib>Bai, Shumeng</creatorcontrib><creatorcontrib>Lu, Chunhua</creatorcontrib><creatorcontrib>Yang, Huanghao</creatorcontrib><title>Dual inhibition of glycolysis and oxidative phosphorylation by aptamer-based artificial enzyme for synergistic cancer therapy</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Dual inhibition of glycolysis and oxidative phosphorylation (OXPHOS) can break the metabolic plasticity of cancer cells to inhibit most energy supply and lead to effective cancer therapy. However, the pharmacokinetic difference among drugs hinders these two inhibitions to realize a uniform temporal and spatial distribution. Herein, we report an aptamer-based artificial enzyme for simultaneous dual inhibition of glycolysis and OXPHOS, which is constructed by arginine aptamer modified carbon-dots-doped graphitic carbon nitride (AptCCN). AptCCN can circularly capture intracellular arginine attribute to the specific binding ability of arginine aptamers to arginine, and further catalyze the oxidation of enriched arginine to nitric oxide (NO) under red light irradiation. In vitro and in vivo experiments showed that arginine depletion and NO stress could inhibit glycolysis and OXPHOS, leading to energy blockage and apoptosis of cancer cells. The presented aptamer-based artificial enzyme strategy provides a new path for cell pathway regulation and synergistic cancer therapy.</description><subject>Apoptosis</subject><subject>Aptamers</subject><subject>Arginine</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Carbon</subject><subject>Carbon dots</subject><subject>Carbon nitride</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Depletion</subject><subject>Drug resistance</subject><subject>Enzymes</subject><subject>Glycolysis</subject><subject>Irradiation</subject><subject>Kinases</subject><subject>Light irradiation</subject><subject>Materials Science</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>Nitric oxide</subject><subject>Oxidation</subject><subject>Oxidative phosphorylation</subject><subject>Pharmacokinetics</subject><subject>Phosphorylation</subject><subject>Radiation</subject><subject>Research Article</subject><subject>Spatial distribution</subject><subject>Therapy</subject><subject>Tumors</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wFvAczSZzX70KPUTCl70HLLZSZuy3azJVlzB_25qFU8OhMnhed-Bh5BzwS8F5-VVFAClZByASchKBgdkImazivE0h79_AfKYnMS45rwAIasJ-bzZ6pa6buVqNzjfUW_psh2Nb8foItVdQ_27a_Tg3pD2Kx_TC2Orv9l6pLof9AYDq3XEhuowOOuMS5XYfYwbpNYHGscOw9LFwRlqdGcw0GGFQffjKTmyuo149rOn5OXu9nn-wBZP94_z6wUzmSgG1tQccl1zY3ghMgmitAaEBmnRQCkKKG1WNbmsGpEJyWs0FkuNM4BcYlbU2ZRc7Hv74F-3GAe19tvQpZMKiqqCKpd5liixp0zwMQa0qg9uo8OoBFc7y2pvWSXLamdZQcrAPhMT2y0x_DX_H_oCoTyCag</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Fang, Xiao</creator><creator>Yuan, Meng</creator><creator>Dai, Junduan</creator><creator>Lin, Qianying</creator><creator>Lin, Yuhong</creator><creator>Wang, Wenli</creator><creator>Jiang, Yifan</creator><creator>Wang, Haihui</creator><creator>Zhao, Fang</creator><creator>Wu, Junye</creator><creator>Bai, Shumeng</creator><creator>Lu, Chunhua</creator><creator>Yang, Huanghao</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20220701</creationdate><title>Dual inhibition of glycolysis and oxidative phosphorylation by aptamer-based artificial enzyme for synergistic cancer therapy</title><author>Fang, Xiao ; Yuan, Meng ; Dai, Junduan ; Lin, Qianying ; Lin, Yuhong ; Wang, Wenli ; Jiang, Yifan ; Wang, Haihui ; Zhao, Fang ; Wu, Junye ; Bai, Shumeng ; Lu, Chunhua ; Yang, Huanghao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-db025ab0cc06134217fc21a24fec271627f38d548d13140becfe7ae92254e36b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apoptosis</topic><topic>Aptamers</topic><topic>Arginine</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Carbon</topic><topic>Carbon dots</topic><topic>Carbon nitride</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Depletion</topic><topic>Drug resistance</topic><topic>Enzymes</topic><topic>Glycolysis</topic><topic>Irradiation</topic><topic>Kinases</topic><topic>Light irradiation</topic><topic>Materials Science</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>Nitric oxide</topic><topic>Oxidation</topic><topic>Oxidative phosphorylation</topic><topic>Pharmacokinetics</topic><topic>Phosphorylation</topic><topic>Radiation</topic><topic>Research Article</topic><topic>Spatial distribution</topic><topic>Therapy</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Xiao</creatorcontrib><creatorcontrib>Yuan, Meng</creatorcontrib><creatorcontrib>Dai, Junduan</creatorcontrib><creatorcontrib>Lin, Qianying</creatorcontrib><creatorcontrib>Lin, Yuhong</creatorcontrib><creatorcontrib>Wang, Wenli</creatorcontrib><creatorcontrib>Jiang, Yifan</creatorcontrib><creatorcontrib>Wang, Haihui</creatorcontrib><creatorcontrib>Zhao, Fang</creatorcontrib><creatorcontrib>Wu, Junye</creatorcontrib><creatorcontrib>Bai, Shumeng</creatorcontrib><creatorcontrib>Lu, Chunhua</creatorcontrib><creatorcontrib>Yang, Huanghao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Xiao</au><au>Yuan, Meng</au><au>Dai, Junduan</au><au>Lin, Qianying</au><au>Lin, Yuhong</au><au>Wang, Wenli</au><au>Jiang, Yifan</au><au>Wang, Haihui</au><au>Zhao, Fang</au><au>Wu, Junye</au><au>Bai, Shumeng</au><au>Lu, Chunhua</au><au>Yang, Huanghao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual inhibition of glycolysis and oxidative phosphorylation by aptamer-based artificial enzyme for synergistic cancer therapy</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>15</volume><issue>7</issue><spage>6278</spage><epage>6287</epage><pages>6278-6287</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Dual inhibition of glycolysis and oxidative phosphorylation (OXPHOS) can break the metabolic plasticity of cancer cells to inhibit most energy supply and lead to effective cancer therapy. However, the pharmacokinetic difference among drugs hinders these two inhibitions to realize a uniform temporal and spatial distribution. Herein, we report an aptamer-based artificial enzyme for simultaneous dual inhibition of glycolysis and OXPHOS, which is constructed by arginine aptamer modified carbon-dots-doped graphitic carbon nitride (AptCCN). AptCCN can circularly capture intracellular arginine attribute to the specific binding ability of arginine aptamers to arginine, and further catalyze the oxidation of enriched arginine to nitric oxide (NO) under red light irradiation. In vitro and in vivo experiments showed that arginine depletion and NO stress could inhibit glycolysis and OXPHOS, leading to energy blockage and apoptosis of cancer cells. The presented aptamer-based artificial enzyme strategy provides a new path for cell pathway regulation and synergistic cancer therapy.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-022-4237-2</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2022-07, Vol.15 (7), p.6278-6287
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2688285453
source SpringerNature Journals
subjects Apoptosis
Aptamers
Arginine
Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Cancer
Cancer therapies
Carbon
Carbon dots
Carbon nitride
Chemistry and Materials Science
Condensed Matter Physics
Depletion
Drug resistance
Enzymes
Glycolysis
Irradiation
Kinases
Light irradiation
Materials Science
Metabolism
Metabolites
Nanomaterials
Nanotechnology
Nitric oxide
Oxidation
Oxidative phosphorylation
Pharmacokinetics
Phosphorylation
Radiation
Research Article
Spatial distribution
Therapy
Tumors
title Dual inhibition of glycolysis and oxidative phosphorylation by aptamer-based artificial enzyme for synergistic cancer therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T08%3A37%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20inhibition%20of%20glycolysis%20and%20oxidative%20phosphorylation%20by%20aptamer-based%20artificial%20enzyme%20for%20synergistic%20cancer%20therapy&rft.jtitle=Nano%20research&rft.au=Fang,%20Xiao&rft.date=2022-07-01&rft.volume=15&rft.issue=7&rft.spage=6278&rft.epage=6287&rft.pages=6278-6287&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-022-4237-2&rft_dat=%3Cproquest_cross%3E2688285453%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688285453&rft_id=info:pmid/&rfr_iscdi=true