Further theories on application of new generalized probability density function and its applications

The exponential‐based probability density functions (PDFs) such as Gaussian, exponential, and Rayleigh are widely used in lifetime modeling, survival analysis, and engineering. Recently, the generalized probability density functions consisting a well‐known exponential PDFs were introduced and succes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quality and reliability engineering international 2022-07, Vol.38 (5), p.2405-2419
Hauptverfasser: Erem, Aysegul, Bilgehan, Bülent, Özyapıcı, Ali, Boratas Sensoy, Zehra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2419
container_issue 5
container_start_page 2405
container_title Quality and reliability engineering international
container_volume 38
creator Erem, Aysegul
Bilgehan, Bülent
Özyapıcı, Ali
Boratas Sensoy, Zehra
description The exponential‐based probability density functions (PDFs) such as Gaussian, exponential, and Rayleigh are widely used in lifetime modeling, survival analysis, and engineering. Recently, the generalized probability density functions consisting a well‐known exponential PDFs were introduced and successfully applied in electrical and electronic engineering. After encouraging results of generalized PDF, further theories and applications are considered within this paper. The parameters of the new (GE) PDF were successfully derived by using the maximum likelihood estimation method. The applications in the paper show that the new generalized probability density function based on maximum likelihood parameter estimators provides more effective probabilistic representation. In this study, statistical properties of new GE distribution is discussed. Some reliability characteristics such as hazard function, mean residual lifetime (MRL) function, and mean past lifetime (MPL) functions are obtained based on special functions. Also, r$r$th moment of the new GE random variable is obtained in analytical form. Maximum likelihood estimates (MLEs) of parameters are also discussed. Lastly, some illustrative examples in engineering and survival analysis are provided based on different real data sets.
doi_str_mv 10.1002/qre.3083
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2688082073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2688082073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3273-42b665834a2f01982e050d738b41c56748b34453ab27d1f3c73cf4d310615cd33</originalsourceid><addsrcrecordid>eNp10E1LwzAYB_AgCs4p-BECXrx0Pkn6kh5lbCoMRNFzSJNUM2raJS2jfnrTzYMXL3ly-PG8_BG6JrAgAPRu582CAWcnaEagLBOSM36KZlCkPOFAinN0EcIWIOKSz5BeD77_NB7Hp_XWBNw6LLuusUr2Nv7bGjuzxx_GGS8b-2007nxbyco2th-xNi5MtR6cOnjpNLZ9-NsjXKKzWjbBXP3WOXpfr96Wj8nm-eFpeb9JFKMFS1Ja5XnGWSppDaTk1EAGumC8SonK8nhBxdI0Y7KihSY1UwVTdaoZgZxkSjM2RzfHvnHD3WBCL7bt4F0cKWjOOXAKxaRuj0r5NgRvatF5-yX9KAiIKUMRMxRThpEmR7q3jRn_deLldXXwP2kZcvc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688082073</pqid></control><display><type>article</type><title>Further theories on application of new generalized probability density function and its applications</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Erem, Aysegul ; Bilgehan, Bülent ; Özyapıcı, Ali ; Boratas Sensoy, Zehra</creator><creatorcontrib>Erem, Aysegul ; Bilgehan, Bülent ; Özyapıcı, Ali ; Boratas Sensoy, Zehra</creatorcontrib><description>The exponential‐based probability density functions (PDFs) such as Gaussian, exponential, and Rayleigh are widely used in lifetime modeling, survival analysis, and engineering. Recently, the generalized probability density functions consisting a well‐known exponential PDFs were introduced and successfully applied in electrical and electronic engineering. After encouraging results of generalized PDF, further theories and applications are considered within this paper. The parameters of the new (GE) PDF were successfully derived by using the maximum likelihood estimation method. The applications in the paper show that the new generalized probability density function based on maximum likelihood parameter estimators provides more effective probabilistic representation. In this study, statistical properties of new GE distribution is discussed. Some reliability characteristics such as hazard function, mean residual lifetime (MRL) function, and mean past lifetime (MPL) functions are obtained based on special functions. Also, r$r$th moment of the new GE random variable is obtained in analytical form. Maximum likelihood estimates (MLEs) of parameters are also discussed. Lastly, some illustrative examples in engineering and survival analysis are provided based on different real data sets.</description><identifier>ISSN: 0748-8017</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.3083</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Electronic engineering ; exponential distribution ; hazard function ; Maximum likelihood estimates ; Maximum likelihood estimation ; Mean ; mean residual lifetime ; Parameter estimation ; Probability density functions ; Random variables ; Statistical analysis ; Survival ; Survival analysis</subject><ispartof>Quality and reliability engineering international, 2022-07, Vol.38 (5), p.2405-2419</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3273-42b665834a2f01982e050d738b41c56748b34453ab27d1f3c73cf4d310615cd33</citedby><cites>FETCH-LOGICAL-c3273-42b665834a2f01982e050d738b41c56748b34453ab27d1f3c73cf4d310615cd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqre.3083$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqre.3083$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Erem, Aysegul</creatorcontrib><creatorcontrib>Bilgehan, Bülent</creatorcontrib><creatorcontrib>Özyapıcı, Ali</creatorcontrib><creatorcontrib>Boratas Sensoy, Zehra</creatorcontrib><title>Further theories on application of new generalized probability density function and its applications</title><title>Quality and reliability engineering international</title><description>The exponential‐based probability density functions (PDFs) such as Gaussian, exponential, and Rayleigh are widely used in lifetime modeling, survival analysis, and engineering. Recently, the generalized probability density functions consisting a well‐known exponential PDFs were introduced and successfully applied in electrical and electronic engineering. After encouraging results of generalized PDF, further theories and applications are considered within this paper. The parameters of the new (GE) PDF were successfully derived by using the maximum likelihood estimation method. The applications in the paper show that the new generalized probability density function based on maximum likelihood parameter estimators provides more effective probabilistic representation. In this study, statistical properties of new GE distribution is discussed. Some reliability characteristics such as hazard function, mean residual lifetime (MRL) function, and mean past lifetime (MPL) functions are obtained based on special functions. Also, r$r$th moment of the new GE random variable is obtained in analytical form. Maximum likelihood estimates (MLEs) of parameters are also discussed. Lastly, some illustrative examples in engineering and survival analysis are provided based on different real data sets.</description><subject>Electronic engineering</subject><subject>exponential distribution</subject><subject>hazard function</subject><subject>Maximum likelihood estimates</subject><subject>Maximum likelihood estimation</subject><subject>Mean</subject><subject>mean residual lifetime</subject><subject>Parameter estimation</subject><subject>Probability density functions</subject><subject>Random variables</subject><subject>Statistical analysis</subject><subject>Survival</subject><subject>Survival analysis</subject><issn>0748-8017</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10E1LwzAYB_AgCs4p-BECXrx0Pkn6kh5lbCoMRNFzSJNUM2raJS2jfnrTzYMXL3ly-PG8_BG6JrAgAPRu582CAWcnaEagLBOSM36KZlCkPOFAinN0EcIWIOKSz5BeD77_NB7Hp_XWBNw6LLuusUr2Nv7bGjuzxx_GGS8b-2007nxbyco2th-xNi5MtR6cOnjpNLZ9-NsjXKKzWjbBXP3WOXpfr96Wj8nm-eFpeb9JFKMFS1Ja5XnGWSppDaTk1EAGumC8SonK8nhBxdI0Y7KihSY1UwVTdaoZgZxkSjM2RzfHvnHD3WBCL7bt4F0cKWjOOXAKxaRuj0r5NgRvatF5-yX9KAiIKUMRMxRThpEmR7q3jRn_deLldXXwP2kZcvc</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Erem, Aysegul</creator><creator>Bilgehan, Bülent</creator><creator>Özyapıcı, Ali</creator><creator>Boratas Sensoy, Zehra</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>202207</creationdate><title>Further theories on application of new generalized probability density function and its applications</title><author>Erem, Aysegul ; Bilgehan, Bülent ; Özyapıcı, Ali ; Boratas Sensoy, Zehra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3273-42b665834a2f01982e050d738b41c56748b34453ab27d1f3c73cf4d310615cd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Electronic engineering</topic><topic>exponential distribution</topic><topic>hazard function</topic><topic>Maximum likelihood estimates</topic><topic>Maximum likelihood estimation</topic><topic>Mean</topic><topic>mean residual lifetime</topic><topic>Parameter estimation</topic><topic>Probability density functions</topic><topic>Random variables</topic><topic>Statistical analysis</topic><topic>Survival</topic><topic>Survival analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erem, Aysegul</creatorcontrib><creatorcontrib>Bilgehan, Bülent</creatorcontrib><creatorcontrib>Özyapıcı, Ali</creatorcontrib><creatorcontrib>Boratas Sensoy, Zehra</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erem, Aysegul</au><au>Bilgehan, Bülent</au><au>Özyapıcı, Ali</au><au>Boratas Sensoy, Zehra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Further theories on application of new generalized probability density function and its applications</atitle><jtitle>Quality and reliability engineering international</jtitle><date>2022-07</date><risdate>2022</risdate><volume>38</volume><issue>5</issue><spage>2405</spage><epage>2419</epage><pages>2405-2419</pages><issn>0748-8017</issn><eissn>1099-1638</eissn><abstract>The exponential‐based probability density functions (PDFs) such as Gaussian, exponential, and Rayleigh are widely used in lifetime modeling, survival analysis, and engineering. Recently, the generalized probability density functions consisting a well‐known exponential PDFs were introduced and successfully applied in electrical and electronic engineering. After encouraging results of generalized PDF, further theories and applications are considered within this paper. The parameters of the new (GE) PDF were successfully derived by using the maximum likelihood estimation method. The applications in the paper show that the new generalized probability density function based on maximum likelihood parameter estimators provides more effective probabilistic representation. In this study, statistical properties of new GE distribution is discussed. Some reliability characteristics such as hazard function, mean residual lifetime (MRL) function, and mean past lifetime (MPL) functions are obtained based on special functions. Also, r$r$th moment of the new GE random variable is obtained in analytical form. Maximum likelihood estimates (MLEs) of parameters are also discussed. Lastly, some illustrative examples in engineering and survival analysis are provided based on different real data sets.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/qre.3083</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0748-8017
ispartof Quality and reliability engineering international, 2022-07, Vol.38 (5), p.2405-2419
issn 0748-8017
1099-1638
language eng
recordid cdi_proquest_journals_2688082073
source Wiley Online Library Journals Frontfile Complete
subjects Electronic engineering
exponential distribution
hazard function
Maximum likelihood estimates
Maximum likelihood estimation
Mean
mean residual lifetime
Parameter estimation
Probability density functions
Random variables
Statistical analysis
Survival
Survival analysis
title Further theories on application of new generalized probability density function and its applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A38%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Further%20theories%20on%20application%20of%20new%20generalized%20probability%20density%20function%20and%20its%20applications&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=Erem,%20Aysegul&rft.date=2022-07&rft.volume=38&rft.issue=5&rft.spage=2405&rft.epage=2419&rft.pages=2405-2419&rft.issn=0748-8017&rft.eissn=1099-1638&rft_id=info:doi/10.1002/qre.3083&rft_dat=%3Cproquest_cross%3E2688082073%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688082073&rft_id=info:pmid/&rfr_iscdi=true