Analytical modeling and experimental verification of the depth of subsurface heat-affected layer in gear profile grinding

The excessive grinding temperature usually causes grinding burns characterized by hardness change, microstructure change, and residual tensile stress, and the grinding damage commonly exists in a specific depth range below the ground surface. In order to examine the depth of the heat-affected layer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2022-07, Vol.121 (5-6), p.4141-4152
Hauptverfasser: Jun, Yi, Tao, Yi, Zongfu, Guo, Zhifeng, Gong, Bing, Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4152
container_issue 5-6
container_start_page 4141
container_title International journal of advanced manufacturing technology
container_volume 121
creator Jun, Yi
Tao, Yi
Zongfu, Guo
Zhifeng, Gong
Bing, Chen
description The excessive grinding temperature usually causes grinding burns characterized by hardness change, microstructure change, and residual tensile stress, and the grinding damage commonly exists in a specific depth range below the ground surface. In order to examine the depth of the heat-affected layer on the gear tooth profile after grinding, the grinding temperature distribution in the workpiece during grinding is evaluated by utilizing a newly established profile grinding thermal model first. Subsequently, the threshold temperature of grinding burn under various grinding conditions is determined by introducing the tempering parameter (i.e., Hollomon Jaffe parameter). Finally, a prediction model for the depth of the heat-affected layer on the sub-surface of the gear tooth profile is established by considering the special contact relationship between the grinding wheel and gear tooth profile. The gear single tooth profile grinding experiment is then carried out, and the proposed model is successfully verified by detecting the cross-section burn and microstructure distribution of the gear tooth after grinding. The effects of grinding process parameters on the distribution of the heat-affected layer on the sub-surface of the tooth profile are investigated. The obtained results reveal that the proposed prediction model can precisely estimate the distribution of heat-affected layers in tooth profile cross-section after gear profile grinding.
doi_str_mv 10.1007/s00170-022-09553-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2687920759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2687920759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-47eec314179c9e940b64dc2606b83730416255b4800da330634148a883a0ba773</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOsWMnY1XxJVVigdlykkuaKk2C7aDm3-NSJDYmn-XnvfM9hNxyuOcA-sEDcA0MkoRBnqaCHc7IgkshmACenpMFJCpjQqvsklx5v4u44ipbkHnV224ObWk7uh8q7Nq-obavKB5GdO0e-xBfvmJZRya0Q0-HmoYt0grHsD1e_FT4ydW2RLpFG5itaywDVrSzMzra9rRB6-johrrtkDau7as45Zpc1LbzePN7LsnH0-P7-oVt3p5f16sNKwXPA5MaMVaS67zMMZdQKFmViQJVZEILkFwlaVrIDKCyQoASksvMZpmwUFitxZLcnfrGD3xO6IPZDZOLW3sTneg8AZ3mkUpOVOkG7x3WZozbWzcbDuao2JwUm6jY_Cg2hxgSp5CPcN-g-2v9T-ob5BF_zQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2687920759</pqid></control><display><type>article</type><title>Analytical modeling and experimental verification of the depth of subsurface heat-affected layer in gear profile grinding</title><source>Springer Nature - Complete Springer Journals</source><creator>Jun, Yi ; Tao, Yi ; Zongfu, Guo ; Zhifeng, Gong ; Bing, Chen</creator><creatorcontrib>Jun, Yi ; Tao, Yi ; Zongfu, Guo ; Zhifeng, Gong ; Bing, Chen</creatorcontrib><description>The excessive grinding temperature usually causes grinding burns characterized by hardness change, microstructure change, and residual tensile stress, and the grinding damage commonly exists in a specific depth range below the ground surface. In order to examine the depth of the heat-affected layer on the gear tooth profile after grinding, the grinding temperature distribution in the workpiece during grinding is evaluated by utilizing a newly established profile grinding thermal model first. Subsequently, the threshold temperature of grinding burn under various grinding conditions is determined by introducing the tempering parameter (i.e., Hollomon Jaffe parameter). Finally, a prediction model for the depth of the heat-affected layer on the sub-surface of the gear tooth profile is established by considering the special contact relationship between the grinding wheel and gear tooth profile. The gear single tooth profile grinding experiment is then carried out, and the proposed model is successfully verified by detecting the cross-section burn and microstructure distribution of the gear tooth after grinding. The effects of grinding process parameters on the distribution of the heat-affected layer on the sub-surface of the tooth profile are investigated. The obtained results reveal that the proposed prediction model can precisely estimate the distribution of heat-affected layers in tooth profile cross-section after gear profile grinding.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-022-09553-x</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Computer-Aided Engineering (CAD ; Cross-sections ; Engineering ; Gear teeth ; Grinding wheels ; Heat ; Industrial and Production Engineering ; Mathematical models ; Mechanical Engineering ; Media Management ; Microstructure ; Original Article ; Prediction models ; Process parameters ; Profile grinding ; Residual stress ; Temperature distribution ; Tensile stress ; Thermal analysis ; Workpieces</subject><ispartof>International journal of advanced manufacturing technology, 2022-07, Vol.121 (5-6), p.4141-4152</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-47eec314179c9e940b64dc2606b83730416255b4800da330634148a883a0ba773</citedby><cites>FETCH-LOGICAL-c319t-47eec314179c9e940b64dc2606b83730416255b4800da330634148a883a0ba773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-022-09553-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-022-09553-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Jun, Yi</creatorcontrib><creatorcontrib>Tao, Yi</creatorcontrib><creatorcontrib>Zongfu, Guo</creatorcontrib><creatorcontrib>Zhifeng, Gong</creatorcontrib><creatorcontrib>Bing, Chen</creatorcontrib><title>Analytical modeling and experimental verification of the depth of subsurface heat-affected layer in gear profile grinding</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>The excessive grinding temperature usually causes grinding burns characterized by hardness change, microstructure change, and residual tensile stress, and the grinding damage commonly exists in a specific depth range below the ground surface. In order to examine the depth of the heat-affected layer on the gear tooth profile after grinding, the grinding temperature distribution in the workpiece during grinding is evaluated by utilizing a newly established profile grinding thermal model first. Subsequently, the threshold temperature of grinding burn under various grinding conditions is determined by introducing the tempering parameter (i.e., Hollomon Jaffe parameter). Finally, a prediction model for the depth of the heat-affected layer on the sub-surface of the gear tooth profile is established by considering the special contact relationship between the grinding wheel and gear tooth profile. The gear single tooth profile grinding experiment is then carried out, and the proposed model is successfully verified by detecting the cross-section burn and microstructure distribution of the gear tooth after grinding. The effects of grinding process parameters on the distribution of the heat-affected layer on the sub-surface of the tooth profile are investigated. The obtained results reveal that the proposed prediction model can precisely estimate the distribution of heat-affected layers in tooth profile cross-section after gear profile grinding.</description><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Cross-sections</subject><subject>Engineering</subject><subject>Gear teeth</subject><subject>Grinding wheels</subject><subject>Heat</subject><subject>Industrial and Production Engineering</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Microstructure</subject><subject>Original Article</subject><subject>Prediction models</subject><subject>Process parameters</subject><subject>Profile grinding</subject><subject>Residual stress</subject><subject>Temperature distribution</subject><subject>Tensile stress</subject><subject>Thermal analysis</subject><subject>Workpieces</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOsWMnY1XxJVVigdlykkuaKk2C7aDm3-NSJDYmn-XnvfM9hNxyuOcA-sEDcA0MkoRBnqaCHc7IgkshmACenpMFJCpjQqvsklx5v4u44ipbkHnV224ObWk7uh8q7Nq-obavKB5GdO0e-xBfvmJZRya0Q0-HmoYt0grHsD1e_FT4ydW2RLpFG5itaywDVrSzMzra9rRB6-johrrtkDau7as45Zpc1LbzePN7LsnH0-P7-oVt3p5f16sNKwXPA5MaMVaS67zMMZdQKFmViQJVZEILkFwlaVrIDKCyQoASksvMZpmwUFitxZLcnfrGD3xO6IPZDZOLW3sTneg8AZ3mkUpOVOkG7x3WZozbWzcbDuao2JwUm6jY_Cg2hxgSp5CPcN-g-2v9T-ob5BF_zQ</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Jun, Yi</creator><creator>Tao, Yi</creator><creator>Zongfu, Guo</creator><creator>Zhifeng, Gong</creator><creator>Bing, Chen</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220701</creationdate><title>Analytical modeling and experimental verification of the depth of subsurface heat-affected layer in gear profile grinding</title><author>Jun, Yi ; Tao, Yi ; Zongfu, Guo ; Zhifeng, Gong ; Bing, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-47eec314179c9e940b64dc2606b83730416255b4800da330634148a883a0ba773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Cross-sections</topic><topic>Engineering</topic><topic>Gear teeth</topic><topic>Grinding wheels</topic><topic>Heat</topic><topic>Industrial and Production Engineering</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Microstructure</topic><topic>Original Article</topic><topic>Prediction models</topic><topic>Process parameters</topic><topic>Profile grinding</topic><topic>Residual stress</topic><topic>Temperature distribution</topic><topic>Tensile stress</topic><topic>Thermal analysis</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jun, Yi</creatorcontrib><creatorcontrib>Tao, Yi</creatorcontrib><creatorcontrib>Zongfu, Guo</creatorcontrib><creatorcontrib>Zhifeng, Gong</creatorcontrib><creatorcontrib>Bing, Chen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jun, Yi</au><au>Tao, Yi</au><au>Zongfu, Guo</au><au>Zhifeng, Gong</au><au>Bing, Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical modeling and experimental verification of the depth of subsurface heat-affected layer in gear profile grinding</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>121</volume><issue>5-6</issue><spage>4141</spage><epage>4152</epage><pages>4141-4152</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The excessive grinding temperature usually causes grinding burns characterized by hardness change, microstructure change, and residual tensile stress, and the grinding damage commonly exists in a specific depth range below the ground surface. In order to examine the depth of the heat-affected layer on the gear tooth profile after grinding, the grinding temperature distribution in the workpiece during grinding is evaluated by utilizing a newly established profile grinding thermal model first. Subsequently, the threshold temperature of grinding burn under various grinding conditions is determined by introducing the tempering parameter (i.e., Hollomon Jaffe parameter). Finally, a prediction model for the depth of the heat-affected layer on the sub-surface of the gear tooth profile is established by considering the special contact relationship between the grinding wheel and gear tooth profile. The gear single tooth profile grinding experiment is then carried out, and the proposed model is successfully verified by detecting the cross-section burn and microstructure distribution of the gear tooth after grinding. The effects of grinding process parameters on the distribution of the heat-affected layer on the sub-surface of the tooth profile are investigated. The obtained results reveal that the proposed prediction model can precisely estimate the distribution of heat-affected layers in tooth profile cross-section after gear profile grinding.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-022-09553-x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2022-07, Vol.121 (5-6), p.4141-4152
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2687920759
source Springer Nature - Complete Springer Journals
subjects CAE) and Design
Computer-Aided Engineering (CAD
Cross-sections
Engineering
Gear teeth
Grinding wheels
Heat
Industrial and Production Engineering
Mathematical models
Mechanical Engineering
Media Management
Microstructure
Original Article
Prediction models
Process parameters
Profile grinding
Residual stress
Temperature distribution
Tensile stress
Thermal analysis
Workpieces
title Analytical modeling and experimental verification of the depth of subsurface heat-affected layer in gear profile grinding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A50%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20modeling%20and%20experimental%20verification%20of%20the%20depth%20of%20subsurface%20heat-affected%20layer%20in%20gear%20profile%20grinding&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Jun,%20Yi&rft.date=2022-07-01&rft.volume=121&rft.issue=5-6&rft.spage=4141&rft.epage=4152&rft.pages=4141-4152&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-022-09553-x&rft_dat=%3Cproquest_cross%3E2687920759%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2687920759&rft_id=info:pmid/&rfr_iscdi=true