Analytical modeling and experimental verification of the depth of subsurface heat-affected layer in gear profile grinding
The excessive grinding temperature usually causes grinding burns characterized by hardness change, microstructure change, and residual tensile stress, and the grinding damage commonly exists in a specific depth range below the ground surface. In order to examine the depth of the heat-affected layer...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2022-07, Vol.121 (5-6), p.4141-4152 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4152 |
---|---|
container_issue | 5-6 |
container_start_page | 4141 |
container_title | International journal of advanced manufacturing technology |
container_volume | 121 |
creator | Jun, Yi Tao, Yi Zongfu, Guo Zhifeng, Gong Bing, Chen |
description | The excessive grinding temperature usually causes grinding burns characterized by hardness change, microstructure change, and residual tensile stress, and the grinding damage commonly exists in a specific depth range below the ground surface. In order to examine the depth of the heat-affected layer on the gear tooth profile after grinding, the grinding temperature distribution in the workpiece during grinding is evaluated by utilizing a newly established profile grinding thermal model first. Subsequently, the threshold temperature of grinding burn under various grinding conditions is determined by introducing the tempering parameter (i.e., Hollomon Jaffe parameter). Finally, a prediction model for the depth of the heat-affected layer on the sub-surface of the gear tooth profile is established by considering the special contact relationship between the grinding wheel and gear tooth profile. The gear single tooth profile grinding experiment is then carried out, and the proposed model is successfully verified by detecting the cross-section burn and microstructure distribution of the gear tooth after grinding. The effects of grinding process parameters on the distribution of the heat-affected layer on the sub-surface of the tooth profile are investigated. The obtained results reveal that the proposed prediction model can precisely estimate the distribution of heat-affected layers in tooth profile cross-section after gear profile grinding. |
doi_str_mv | 10.1007/s00170-022-09553-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2687920759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2687920759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-47eec314179c9e940b64dc2606b83730416255b4800da330634148a883a0ba773</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOsWMnY1XxJVVigdlykkuaKk2C7aDm3-NSJDYmn-XnvfM9hNxyuOcA-sEDcA0MkoRBnqaCHc7IgkshmACenpMFJCpjQqvsklx5v4u44ipbkHnV224ObWk7uh8q7Nq-obavKB5GdO0e-xBfvmJZRya0Q0-HmoYt0grHsD1e_FT4ydW2RLpFG5itaywDVrSzMzra9rRB6-johrrtkDau7as45Zpc1LbzePN7LsnH0-P7-oVt3p5f16sNKwXPA5MaMVaS67zMMZdQKFmViQJVZEILkFwlaVrIDKCyQoASksvMZpmwUFitxZLcnfrGD3xO6IPZDZOLW3sTneg8AZ3mkUpOVOkG7x3WZozbWzcbDuao2JwUm6jY_Cg2hxgSp5CPcN-g-2v9T-ob5BF_zQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2687920759</pqid></control><display><type>article</type><title>Analytical modeling and experimental verification of the depth of subsurface heat-affected layer in gear profile grinding</title><source>Springer Nature - Complete Springer Journals</source><creator>Jun, Yi ; Tao, Yi ; Zongfu, Guo ; Zhifeng, Gong ; Bing, Chen</creator><creatorcontrib>Jun, Yi ; Tao, Yi ; Zongfu, Guo ; Zhifeng, Gong ; Bing, Chen</creatorcontrib><description>The excessive grinding temperature usually causes grinding burns characterized by hardness change, microstructure change, and residual tensile stress, and the grinding damage commonly exists in a specific depth range below the ground surface. In order to examine the depth of the heat-affected layer on the gear tooth profile after grinding, the grinding temperature distribution in the workpiece during grinding is evaluated by utilizing a newly established profile grinding thermal model first. Subsequently, the threshold temperature of grinding burn under various grinding conditions is determined by introducing the tempering parameter (i.e., Hollomon Jaffe parameter). Finally, a prediction model for the depth of the heat-affected layer on the sub-surface of the gear tooth profile is established by considering the special contact relationship between the grinding wheel and gear tooth profile. The gear single tooth profile grinding experiment is then carried out, and the proposed model is successfully verified by detecting the cross-section burn and microstructure distribution of the gear tooth after grinding. The effects of grinding process parameters on the distribution of the heat-affected layer on the sub-surface of the tooth profile are investigated. The obtained results reveal that the proposed prediction model can precisely estimate the distribution of heat-affected layers in tooth profile cross-section after gear profile grinding.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-022-09553-x</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Computer-Aided Engineering (CAD ; Cross-sections ; Engineering ; Gear teeth ; Grinding wheels ; Heat ; Industrial and Production Engineering ; Mathematical models ; Mechanical Engineering ; Media Management ; Microstructure ; Original Article ; Prediction models ; Process parameters ; Profile grinding ; Residual stress ; Temperature distribution ; Tensile stress ; Thermal analysis ; Workpieces</subject><ispartof>International journal of advanced manufacturing technology, 2022-07, Vol.121 (5-6), p.4141-4152</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-47eec314179c9e940b64dc2606b83730416255b4800da330634148a883a0ba773</citedby><cites>FETCH-LOGICAL-c319t-47eec314179c9e940b64dc2606b83730416255b4800da330634148a883a0ba773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-022-09553-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-022-09553-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Jun, Yi</creatorcontrib><creatorcontrib>Tao, Yi</creatorcontrib><creatorcontrib>Zongfu, Guo</creatorcontrib><creatorcontrib>Zhifeng, Gong</creatorcontrib><creatorcontrib>Bing, Chen</creatorcontrib><title>Analytical modeling and experimental verification of the depth of subsurface heat-affected layer in gear profile grinding</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>The excessive grinding temperature usually causes grinding burns characterized by hardness change, microstructure change, and residual tensile stress, and the grinding damage commonly exists in a specific depth range below the ground surface. In order to examine the depth of the heat-affected layer on the gear tooth profile after grinding, the grinding temperature distribution in the workpiece during grinding is evaluated by utilizing a newly established profile grinding thermal model first. Subsequently, the threshold temperature of grinding burn under various grinding conditions is determined by introducing the tempering parameter (i.e., Hollomon Jaffe parameter). Finally, a prediction model for the depth of the heat-affected layer on the sub-surface of the gear tooth profile is established by considering the special contact relationship between the grinding wheel and gear tooth profile. The gear single tooth profile grinding experiment is then carried out, and the proposed model is successfully verified by detecting the cross-section burn and microstructure distribution of the gear tooth after grinding. The effects of grinding process parameters on the distribution of the heat-affected layer on the sub-surface of the tooth profile are investigated. The obtained results reveal that the proposed prediction model can precisely estimate the distribution of heat-affected layers in tooth profile cross-section after gear profile grinding.</description><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Cross-sections</subject><subject>Engineering</subject><subject>Gear teeth</subject><subject>Grinding wheels</subject><subject>Heat</subject><subject>Industrial and Production Engineering</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Microstructure</subject><subject>Original Article</subject><subject>Prediction models</subject><subject>Process parameters</subject><subject>Profile grinding</subject><subject>Residual stress</subject><subject>Temperature distribution</subject><subject>Tensile stress</subject><subject>Thermal analysis</subject><subject>Workpieces</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOsWMnY1XxJVVigdlykkuaKk2C7aDm3-NSJDYmn-XnvfM9hNxyuOcA-sEDcA0MkoRBnqaCHc7IgkshmACenpMFJCpjQqvsklx5v4u44ipbkHnV224ObWk7uh8q7Nq-obavKB5GdO0e-xBfvmJZRya0Q0-HmoYt0grHsD1e_FT4ydW2RLpFG5itaywDVrSzMzra9rRB6-johrrtkDau7as45Zpc1LbzePN7LsnH0-P7-oVt3p5f16sNKwXPA5MaMVaS67zMMZdQKFmViQJVZEILkFwlaVrIDKCyQoASksvMZpmwUFitxZLcnfrGD3xO6IPZDZOLW3sTneg8AZ3mkUpOVOkG7x3WZozbWzcbDuao2JwUm6jY_Cg2hxgSp5CPcN-g-2v9T-ob5BF_zQ</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Jun, Yi</creator><creator>Tao, Yi</creator><creator>Zongfu, Guo</creator><creator>Zhifeng, Gong</creator><creator>Bing, Chen</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220701</creationdate><title>Analytical modeling and experimental verification of the depth of subsurface heat-affected layer in gear profile grinding</title><author>Jun, Yi ; Tao, Yi ; Zongfu, Guo ; Zhifeng, Gong ; Bing, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-47eec314179c9e940b64dc2606b83730416255b4800da330634148a883a0ba773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Cross-sections</topic><topic>Engineering</topic><topic>Gear teeth</topic><topic>Grinding wheels</topic><topic>Heat</topic><topic>Industrial and Production Engineering</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Microstructure</topic><topic>Original Article</topic><topic>Prediction models</topic><topic>Process parameters</topic><topic>Profile grinding</topic><topic>Residual stress</topic><topic>Temperature distribution</topic><topic>Tensile stress</topic><topic>Thermal analysis</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jun, Yi</creatorcontrib><creatorcontrib>Tao, Yi</creatorcontrib><creatorcontrib>Zongfu, Guo</creatorcontrib><creatorcontrib>Zhifeng, Gong</creatorcontrib><creatorcontrib>Bing, Chen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jun, Yi</au><au>Tao, Yi</au><au>Zongfu, Guo</au><au>Zhifeng, Gong</au><au>Bing, Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical modeling and experimental verification of the depth of subsurface heat-affected layer in gear profile grinding</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>121</volume><issue>5-6</issue><spage>4141</spage><epage>4152</epage><pages>4141-4152</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The excessive grinding temperature usually causes grinding burns characterized by hardness change, microstructure change, and residual tensile stress, and the grinding damage commonly exists in a specific depth range below the ground surface. In order to examine the depth of the heat-affected layer on the gear tooth profile after grinding, the grinding temperature distribution in the workpiece during grinding is evaluated by utilizing a newly established profile grinding thermal model first. Subsequently, the threshold temperature of grinding burn under various grinding conditions is determined by introducing the tempering parameter (i.e., Hollomon Jaffe parameter). Finally, a prediction model for the depth of the heat-affected layer on the sub-surface of the gear tooth profile is established by considering the special contact relationship between the grinding wheel and gear tooth profile. The gear single tooth profile grinding experiment is then carried out, and the proposed model is successfully verified by detecting the cross-section burn and microstructure distribution of the gear tooth after grinding. The effects of grinding process parameters on the distribution of the heat-affected layer on the sub-surface of the tooth profile are investigated. The obtained results reveal that the proposed prediction model can precisely estimate the distribution of heat-affected layers in tooth profile cross-section after gear profile grinding.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-022-09553-x</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2022-07, Vol.121 (5-6), p.4141-4152 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2687920759 |
source | Springer Nature - Complete Springer Journals |
subjects | CAE) and Design Computer-Aided Engineering (CAD Cross-sections Engineering Gear teeth Grinding wheels Heat Industrial and Production Engineering Mathematical models Mechanical Engineering Media Management Microstructure Original Article Prediction models Process parameters Profile grinding Residual stress Temperature distribution Tensile stress Thermal analysis Workpieces |
title | Analytical modeling and experimental verification of the depth of subsurface heat-affected layer in gear profile grinding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A50%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20modeling%20and%20experimental%20verification%20of%20the%20depth%20of%20subsurface%20heat-affected%20layer%20in%20gear%20profile%20grinding&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Jun,%20Yi&rft.date=2022-07-01&rft.volume=121&rft.issue=5-6&rft.spage=4141&rft.epage=4152&rft.pages=4141-4152&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-022-09553-x&rft_dat=%3Cproquest_cross%3E2687920759%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2687920759&rft_id=info:pmid/&rfr_iscdi=true |