Role of lithium doping on α-Fe2O3 photoanode for enhanced photoelectrochemical water oxidation

High-valent or equivalent foreign element doping could improve the charge separation of the hematite (α-Fe2O3) for enhancing the photoelectrochemical (PEC) water oxidation. However, the induced extra surface states would anodically shift the onset potential. This work reported a two-step hydrotherma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2022-09, Vol.915, p.165349, Article 165349
Hauptverfasser: Cai, Jiajia, Xu, Liangcheng, Tang, Xiangxuan, Kong, Lingna, Wang, Jianmin, Wang, Ruifei, Li, Xiuling, Xie, Qian, Mao, Keke, Pan, Haijun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 165349
container_title Journal of alloys and compounds
container_volume 915
creator Cai, Jiajia
Xu, Liangcheng
Tang, Xiangxuan
Kong, Lingna
Wang, Jianmin
Wang, Ruifei
Li, Xiuling
Xie, Qian
Mao, Keke
Pan, Haijun
description High-valent or equivalent foreign element doping could improve the charge separation of the hematite (α-Fe2O3) for enhancing the photoelectrochemical (PEC) water oxidation. However, the induced extra surface states would anodically shift the onset potential. This work reported a two-step hydrothermal method to prepare the low-valent Li doped α-Fe2O3 that alleviated the charge recombination and partially removed the surface states. Thus, the photocurrent density of optimized Li-doped α-Fe2O3 was 0.75 mA/cm2 (1.23 VRHE), up to 3.6 times higher than that of pristine α-Fe2O3 (0.21 mA/cm2). Meanwhile, the onset potential also shifted negatively to 0.68 VRHE by 100 mV. The Density Functional Theory (DFT) revealed the Li atoms occupied the interstitial sites of the oxygen octahedron, and the introduced half-filled states in the bandgap can expand the light absorbance and improve the charge transport. The synergetic effects of enhanced charge separation efficiency and removal of surface states contributed to efficient PEC water oxidation. The low valent ions Li+ are used as the dopant, the performance and the corresponding mechanism are revealed and clarified. The photocurrent density increases from 0.21 mA/cm2 for α-Fe2O3 to 0.75 mA/cm2 (1.23 VRHE) after Li doping. The photocurrent density increase can be attributed to the introduced half-filled states in the bandgap that expand the light absorbance and the improved charge separation efficiency, which are validated by both the experimental and theoretical results. [Display omitted] •N-type Li doped α-Fe2O3 is successfully prepared by hydrothermal method.•The doping of Li decreases the oxygen vacancies in the α-Fe2O3 surface.•The surface states are partially removed in the Li doped α-Fe2O3.•Increased charge separation efficiency is achieved upon Li doping.
doi_str_mv 10.1016/j.jallcom.2022.165349
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2687836773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838822017406</els_id><sourcerecordid>2687836773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-ed24b2c907fb5e97f9463d38755b5f73ee2db766ab0cc02dc324d3524b465ce23</originalsourceid><addsrcrecordid>eNqFkM1KxDAUhYMoOI4-ghBw3ZqfJmlXIoOjwsCA6Dqkya1NaZsx7fjzWL6Iz2SHund14XDOuZwPoUtKUkqovG7SxrStDV3KCGMplYJnxRFa0FzxJJOyOEYLUjCR5DzPT9HZMDSEEFpwukD6KbSAQ4VbP9Z-32EXdr5_xaHHP9_JGtiW410dxmD64ABXIWLoa9NbcLMOLdgxBltD561p8YcZIeLw6Z0ZfejP0Ull2gEu_u4SvazvnlcPyWZ7_7i63SSWCTYm4FhWMlsQVZUCClUVmeSO50qIUlSKAzBXKilNSawlzFnOMsfFFMqksMD4El3NvbsY3vYwjLoJ-9hPLzWTucq5VIpPLjG7bAzDEKHSu-g7E780JfrAUjf6j6U-sNQzyyl3M-dgmvDuIerBejhA8HGar13w_zT8AjNHgR8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2687836773</pqid></control><display><type>article</type><title>Role of lithium doping on α-Fe2O3 photoanode for enhanced photoelectrochemical water oxidation</title><source>Elsevier ScienceDirect Journals</source><creator>Cai, Jiajia ; Xu, Liangcheng ; Tang, Xiangxuan ; Kong, Lingna ; Wang, Jianmin ; Wang, Ruifei ; Li, Xiuling ; Xie, Qian ; Mao, Keke ; Pan, Haijun</creator><creatorcontrib>Cai, Jiajia ; Xu, Liangcheng ; Tang, Xiangxuan ; Kong, Lingna ; Wang, Jianmin ; Wang, Ruifei ; Li, Xiuling ; Xie, Qian ; Mao, Keke ; Pan, Haijun</creatorcontrib><description>High-valent or equivalent foreign element doping could improve the charge separation of the hematite (α-Fe2O3) for enhancing the photoelectrochemical (PEC) water oxidation. However, the induced extra surface states would anodically shift the onset potential. This work reported a two-step hydrothermal method to prepare the low-valent Li doped α-Fe2O3 that alleviated the charge recombination and partially removed the surface states. Thus, the photocurrent density of optimized Li-doped α-Fe2O3 was 0.75 mA/cm2 (1.23 VRHE), up to 3.6 times higher than that of pristine α-Fe2O3 (0.21 mA/cm2). Meanwhile, the onset potential also shifted negatively to 0.68 VRHE by 100 mV. The Density Functional Theory (DFT) revealed the Li atoms occupied the interstitial sites of the oxygen octahedron, and the introduced half-filled states in the bandgap can expand the light absorbance and improve the charge transport. The synergetic effects of enhanced charge separation efficiency and removal of surface states contributed to efficient PEC water oxidation. The low valent ions Li+ are used as the dopant, the performance and the corresponding mechanism are revealed and clarified. The photocurrent density increases from 0.21 mA/cm2 for α-Fe2O3 to 0.75 mA/cm2 (1.23 VRHE) after Li doping. The photocurrent density increase can be attributed to the introduced half-filled states in the bandgap that expand the light absorbance and the improved charge separation efficiency, which are validated by both the experimental and theoretical results. [Display omitted] •N-type Li doped α-Fe2O3 is successfully prepared by hydrothermal method.•The doping of Li decreases the oxygen vacancies in the α-Fe2O3 surface.•The surface states are partially removed in the Li doped α-Fe2O3.•Increased charge separation efficiency is achieved upon Li doping.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2022.165349</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Anodizing ; Charge efficiency ; Charge transport ; Conductivity ; Density functional theory ; Doping ; Ferric oxide ; Hematite ; Lithium ; Oxidation ; Photoanodes ; Photoelectric effect ; Photoelectrochemistry ; Separation ; Surface states ; Water oxidation ; α-Fe2O3</subject><ispartof>Journal of alloys and compounds, 2022-09, Vol.915, p.165349, Article 165349</ispartof><rights>2022</rights><rights>Copyright Elsevier BV Sep 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-ed24b2c907fb5e97f9463d38755b5f73ee2db766ab0cc02dc324d3524b465ce23</citedby><cites>FETCH-LOGICAL-c252t-ed24b2c907fb5e97f9463d38755b5f73ee2db766ab0cc02dc324d3524b465ce23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925838822017406$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Cai, Jiajia</creatorcontrib><creatorcontrib>Xu, Liangcheng</creatorcontrib><creatorcontrib>Tang, Xiangxuan</creatorcontrib><creatorcontrib>Kong, Lingna</creatorcontrib><creatorcontrib>Wang, Jianmin</creatorcontrib><creatorcontrib>Wang, Ruifei</creatorcontrib><creatorcontrib>Li, Xiuling</creatorcontrib><creatorcontrib>Xie, Qian</creatorcontrib><creatorcontrib>Mao, Keke</creatorcontrib><creatorcontrib>Pan, Haijun</creatorcontrib><title>Role of lithium doping on α-Fe2O3 photoanode for enhanced photoelectrochemical water oxidation</title><title>Journal of alloys and compounds</title><description>High-valent or equivalent foreign element doping could improve the charge separation of the hematite (α-Fe2O3) for enhancing the photoelectrochemical (PEC) water oxidation. However, the induced extra surface states would anodically shift the onset potential. This work reported a two-step hydrothermal method to prepare the low-valent Li doped α-Fe2O3 that alleviated the charge recombination and partially removed the surface states. Thus, the photocurrent density of optimized Li-doped α-Fe2O3 was 0.75 mA/cm2 (1.23 VRHE), up to 3.6 times higher than that of pristine α-Fe2O3 (0.21 mA/cm2). Meanwhile, the onset potential also shifted negatively to 0.68 VRHE by 100 mV. The Density Functional Theory (DFT) revealed the Li atoms occupied the interstitial sites of the oxygen octahedron, and the introduced half-filled states in the bandgap can expand the light absorbance and improve the charge transport. The synergetic effects of enhanced charge separation efficiency and removal of surface states contributed to efficient PEC water oxidation. The low valent ions Li+ are used as the dopant, the performance and the corresponding mechanism are revealed and clarified. The photocurrent density increases from 0.21 mA/cm2 for α-Fe2O3 to 0.75 mA/cm2 (1.23 VRHE) after Li doping. The photocurrent density increase can be attributed to the introduced half-filled states in the bandgap that expand the light absorbance and the improved charge separation efficiency, which are validated by both the experimental and theoretical results. [Display omitted] •N-type Li doped α-Fe2O3 is successfully prepared by hydrothermal method.•The doping of Li decreases the oxygen vacancies in the α-Fe2O3 surface.•The surface states are partially removed in the Li doped α-Fe2O3.•Increased charge separation efficiency is achieved upon Li doping.</description><subject>Anodizing</subject><subject>Charge efficiency</subject><subject>Charge transport</subject><subject>Conductivity</subject><subject>Density functional theory</subject><subject>Doping</subject><subject>Ferric oxide</subject><subject>Hematite</subject><subject>Lithium</subject><subject>Oxidation</subject><subject>Photoanodes</subject><subject>Photoelectric effect</subject><subject>Photoelectrochemistry</subject><subject>Separation</subject><subject>Surface states</subject><subject>Water oxidation</subject><subject>α-Fe2O3</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KxDAUhYMoOI4-ghBw3ZqfJmlXIoOjwsCA6Dqkya1NaZsx7fjzWL6Iz2SHund14XDOuZwPoUtKUkqovG7SxrStDV3KCGMplYJnxRFa0FzxJJOyOEYLUjCR5DzPT9HZMDSEEFpwukD6KbSAQ4VbP9Z-32EXdr5_xaHHP9_JGtiW410dxmD64ABXIWLoa9NbcLMOLdgxBltD561p8YcZIeLw6Z0ZfejP0Ull2gEu_u4SvazvnlcPyWZ7_7i63SSWCTYm4FhWMlsQVZUCClUVmeSO50qIUlSKAzBXKilNSawlzFnOMsfFFMqksMD4El3NvbsY3vYwjLoJ-9hPLzWTucq5VIpPLjG7bAzDEKHSu-g7E780JfrAUjf6j6U-sNQzyyl3M-dgmvDuIerBejhA8HGar13w_zT8AjNHgR8</recordid><startdate>20220915</startdate><enddate>20220915</enddate><creator>Cai, Jiajia</creator><creator>Xu, Liangcheng</creator><creator>Tang, Xiangxuan</creator><creator>Kong, Lingna</creator><creator>Wang, Jianmin</creator><creator>Wang, Ruifei</creator><creator>Li, Xiuling</creator><creator>Xie, Qian</creator><creator>Mao, Keke</creator><creator>Pan, Haijun</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220915</creationdate><title>Role of lithium doping on α-Fe2O3 photoanode for enhanced photoelectrochemical water oxidation</title><author>Cai, Jiajia ; Xu, Liangcheng ; Tang, Xiangxuan ; Kong, Lingna ; Wang, Jianmin ; Wang, Ruifei ; Li, Xiuling ; Xie, Qian ; Mao, Keke ; Pan, Haijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-ed24b2c907fb5e97f9463d38755b5f73ee2db766ab0cc02dc324d3524b465ce23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anodizing</topic><topic>Charge efficiency</topic><topic>Charge transport</topic><topic>Conductivity</topic><topic>Density functional theory</topic><topic>Doping</topic><topic>Ferric oxide</topic><topic>Hematite</topic><topic>Lithium</topic><topic>Oxidation</topic><topic>Photoanodes</topic><topic>Photoelectric effect</topic><topic>Photoelectrochemistry</topic><topic>Separation</topic><topic>Surface states</topic><topic>Water oxidation</topic><topic>α-Fe2O3</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Jiajia</creatorcontrib><creatorcontrib>Xu, Liangcheng</creatorcontrib><creatorcontrib>Tang, Xiangxuan</creatorcontrib><creatorcontrib>Kong, Lingna</creatorcontrib><creatorcontrib>Wang, Jianmin</creatorcontrib><creatorcontrib>Wang, Ruifei</creatorcontrib><creatorcontrib>Li, Xiuling</creatorcontrib><creatorcontrib>Xie, Qian</creatorcontrib><creatorcontrib>Mao, Keke</creatorcontrib><creatorcontrib>Pan, Haijun</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Jiajia</au><au>Xu, Liangcheng</au><au>Tang, Xiangxuan</au><au>Kong, Lingna</au><au>Wang, Jianmin</au><au>Wang, Ruifei</au><au>Li, Xiuling</au><au>Xie, Qian</au><au>Mao, Keke</au><au>Pan, Haijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of lithium doping on α-Fe2O3 photoanode for enhanced photoelectrochemical water oxidation</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2022-09-15</date><risdate>2022</risdate><volume>915</volume><spage>165349</spage><pages>165349-</pages><artnum>165349</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>High-valent or equivalent foreign element doping could improve the charge separation of the hematite (α-Fe2O3) for enhancing the photoelectrochemical (PEC) water oxidation. However, the induced extra surface states would anodically shift the onset potential. This work reported a two-step hydrothermal method to prepare the low-valent Li doped α-Fe2O3 that alleviated the charge recombination and partially removed the surface states. Thus, the photocurrent density of optimized Li-doped α-Fe2O3 was 0.75 mA/cm2 (1.23 VRHE), up to 3.6 times higher than that of pristine α-Fe2O3 (0.21 mA/cm2). Meanwhile, the onset potential also shifted negatively to 0.68 VRHE by 100 mV. The Density Functional Theory (DFT) revealed the Li atoms occupied the interstitial sites of the oxygen octahedron, and the introduced half-filled states in the bandgap can expand the light absorbance and improve the charge transport. The synergetic effects of enhanced charge separation efficiency and removal of surface states contributed to efficient PEC water oxidation. The low valent ions Li+ are used as the dopant, the performance and the corresponding mechanism are revealed and clarified. The photocurrent density increases from 0.21 mA/cm2 for α-Fe2O3 to 0.75 mA/cm2 (1.23 VRHE) after Li doping. The photocurrent density increase can be attributed to the introduced half-filled states in the bandgap that expand the light absorbance and the improved charge separation efficiency, which are validated by both the experimental and theoretical results. [Display omitted] •N-type Li doped α-Fe2O3 is successfully prepared by hydrothermal method.•The doping of Li decreases the oxygen vacancies in the α-Fe2O3 surface.•The surface states are partially removed in the Li doped α-Fe2O3.•Increased charge separation efficiency is achieved upon Li doping.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2022.165349</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2022-09, Vol.915, p.165349, Article 165349
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2687836773
source Elsevier ScienceDirect Journals
subjects Anodizing
Charge efficiency
Charge transport
Conductivity
Density functional theory
Doping
Ferric oxide
Hematite
Lithium
Oxidation
Photoanodes
Photoelectric effect
Photoelectrochemistry
Separation
Surface states
Water oxidation
α-Fe2O3
title Role of lithium doping on α-Fe2O3 photoanode for enhanced photoelectrochemical water oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A17%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20lithium%20doping%20on%20%CE%B1-Fe2O3%20photoanode%20for%20enhanced%20photoelectrochemical%20water%20oxidation&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Cai,%20Jiajia&rft.date=2022-09-15&rft.volume=915&rft.spage=165349&rft.pages=165349-&rft.artnum=165349&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2022.165349&rft_dat=%3Cproquest_cross%3E2687836773%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2687836773&rft_id=info:pmid/&rft_els_id=S0925838822017406&rfr_iscdi=true