Machine learning based prediction of subcooled bubble condensation behavior, validation with experimental and numerical results

•Behavior study of subcooled single bubble condensing life-history.•Generated the datasets from both experiment and numerical results.•Trained the datasets to predict the bubble condensing history using ML.•Trained ML model used to predict condensing behavior of various bubble diameters. Measuring a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear engineering and design 2022-07, Vol.393, p.111794, Article 111794
Hauptverfasser: Nagulapati, Vijay Mohan, S Paramanantham, SalaiSargunan, Ni, Aleksey, Raman, Senthil Kumar, Lim, Hankwon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 111794
container_title Nuclear engineering and design
container_volume 393
creator Nagulapati, Vijay Mohan
S Paramanantham, SalaiSargunan
Ni, Aleksey
Raman, Senthil Kumar
Lim, Hankwon
description •Behavior study of subcooled single bubble condensing life-history.•Generated the datasets from both experiment and numerical results.•Trained the datasets to predict the bubble condensing history using ML.•Trained ML model used to predict condensing behavior of various bubble diameters. Measuring a full life cycle of condensing subcooled bubbles using either the experimental and/or numerical approaches is a very challenging problem. In present study this problem is solved through Machine Learning techniques using existing data sets from both experiment and numerical results. Two different machine leaning methods, Linear Regression (LR) and Gaussian Process Regression (GPR) are trained to predict the bubble condensing life-history. The models are trained with 70% of data and validated using 30 % data from the collected datasets. The predicted results are compared with both numerical and experimental results and model prediction obtained good agreement. Additionally, the validated machine learning models are used to predict various bubble diameters ranging between 1 and 6 mm. These predicted results give a much better understanding of subcooled bubble condensation behavior without the need for extensive experiments and numerical studies.
doi_str_mv 10.1016/j.nucengdes.2022.111794
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2687835862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0029549322001480</els_id><sourcerecordid>2687835862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-521afcdf84ff42754828d40295c4f9228b10ddeddb0416a5948b4d6290776d383</originalsourceid><addsrcrecordid>eNqFkE1rGzEQhkVJoY6b3xBBrllX0mpX2qMxSVpI6SWF3oQ-Zm2ZteRIu0566l-v3A25di7DvLzz9SB0TcmKEtp-2a_CZCFsHeQVI4ytKKWi4x_QgkrBKtF0vy7QghDWVQ3v6k_oMuc9OUfHFujPd213PgAeQKfgwxYbncHhYwLn7ehjwLHHeTI2xqHoZjJmAGxjcBCy_mcwsNMnH9MtPunBu1l88eMOw-sRkj9AGPWAdXA4TIci2FIlyNMw5s_oY6-HDFdveYl-3t89bb5Wjz8evm3Wj5Vloh6rhlHdW9dL3veciYZLJh0vPzWW9x1j0lDiHDhnCKetbjouDXct64gQratlvUQ389xjis8T5FHt45RCWalYK4WsG9my4hKzy6aYc4JeHcv5Ov1WlKgzbbVX77TVmbaaaZfO9dwJ5YmTh6Sy9RBsoZjAjspF_98ZfwG80499</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2687835862</pqid></control><display><type>article</type><title>Machine learning based prediction of subcooled bubble condensation behavior, validation with experimental and numerical results</title><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Nagulapati, Vijay Mohan ; S Paramanantham, SalaiSargunan ; Ni, Aleksey ; Raman, Senthil Kumar ; Lim, Hankwon</creator><creatorcontrib>Nagulapati, Vijay Mohan ; S Paramanantham, SalaiSargunan ; Ni, Aleksey ; Raman, Senthil Kumar ; Lim, Hankwon</creatorcontrib><description>•Behavior study of subcooled single bubble condensing life-history.•Generated the datasets from both experiment and numerical results.•Trained the datasets to predict the bubble condensing history using ML.•Trained ML model used to predict condensing behavior of various bubble diameters. Measuring a full life cycle of condensing subcooled bubbles using either the experimental and/or numerical approaches is a very challenging problem. In present study this problem is solved through Machine Learning techniques using existing data sets from both experiment and numerical results. Two different machine leaning methods, Linear Regression (LR) and Gaussian Process Regression (GPR) are trained to predict the bubble condensing life-history. The models are trained with 70% of data and validated using 30 % data from the collected datasets. The predicted results are compared with both numerical and experimental results and model prediction obtained good agreement. Additionally, the validated machine learning models are used to predict various bubble diameters ranging between 1 and 6 mm. These predicted results give a much better understanding of subcooled bubble condensation behavior without the need for extensive experiments and numerical studies.</description><identifier>ISSN: 0029-5493</identifier><identifier>EISSN: 1872-759X</identifier><identifier>DOI: 10.1016/j.nucengdes.2022.111794</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bubble condensation prediction ; Condensation ; Diameters ; Direct contact condensation ; Gaussian process ; Learning algorithms ; Life cycles ; Life history ; Machine Learning ; Mathematical models ; Nuclear reactor ; Subcooled flow boiling</subject><ispartof>Nuclear engineering and design, 2022-07, Vol.393, p.111794, Article 111794</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-521afcdf84ff42754828d40295c4f9228b10ddeddb0416a5948b4d6290776d383</citedby><cites>FETCH-LOGICAL-c273t-521afcdf84ff42754828d40295c4f9228b10ddeddb0416a5948b4d6290776d383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0029549322001480$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Nagulapati, Vijay Mohan</creatorcontrib><creatorcontrib>S Paramanantham, SalaiSargunan</creatorcontrib><creatorcontrib>Ni, Aleksey</creatorcontrib><creatorcontrib>Raman, Senthil Kumar</creatorcontrib><creatorcontrib>Lim, Hankwon</creatorcontrib><title>Machine learning based prediction of subcooled bubble condensation behavior, validation with experimental and numerical results</title><title>Nuclear engineering and design</title><description>•Behavior study of subcooled single bubble condensing life-history.•Generated the datasets from both experiment and numerical results.•Trained the datasets to predict the bubble condensing history using ML.•Trained ML model used to predict condensing behavior of various bubble diameters. Measuring a full life cycle of condensing subcooled bubbles using either the experimental and/or numerical approaches is a very challenging problem. In present study this problem is solved through Machine Learning techniques using existing data sets from both experiment and numerical results. Two different machine leaning methods, Linear Regression (LR) and Gaussian Process Regression (GPR) are trained to predict the bubble condensing life-history. The models are trained with 70% of data and validated using 30 % data from the collected datasets. The predicted results are compared with both numerical and experimental results and model prediction obtained good agreement. Additionally, the validated machine learning models are used to predict various bubble diameters ranging between 1 and 6 mm. These predicted results give a much better understanding of subcooled bubble condensation behavior without the need for extensive experiments and numerical studies.</description><subject>Bubble condensation prediction</subject><subject>Condensation</subject><subject>Diameters</subject><subject>Direct contact condensation</subject><subject>Gaussian process</subject><subject>Learning algorithms</subject><subject>Life cycles</subject><subject>Life history</subject><subject>Machine Learning</subject><subject>Mathematical models</subject><subject>Nuclear reactor</subject><subject>Subcooled flow boiling</subject><issn>0029-5493</issn><issn>1872-759X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rGzEQhkVJoY6b3xBBrllX0mpX2qMxSVpI6SWF3oQ-Zm2ZteRIu0566l-v3A25di7DvLzz9SB0TcmKEtp-2a_CZCFsHeQVI4ytKKWi4x_QgkrBKtF0vy7QghDWVQ3v6k_oMuc9OUfHFujPd213PgAeQKfgwxYbncHhYwLn7ehjwLHHeTI2xqHoZjJmAGxjcBCy_mcwsNMnH9MtPunBu1l88eMOw-sRkj9AGPWAdXA4TIci2FIlyNMw5s_oY6-HDFdveYl-3t89bb5Wjz8evm3Wj5Vloh6rhlHdW9dL3veciYZLJh0vPzWW9x1j0lDiHDhnCKetbjouDXct64gQratlvUQ389xjis8T5FHt45RCWalYK4WsG9my4hKzy6aYc4JeHcv5Ov1WlKgzbbVX77TVmbaaaZfO9dwJ5YmTh6Sy9RBsoZjAjspF_98ZfwG80499</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Nagulapati, Vijay Mohan</creator><creator>S Paramanantham, SalaiSargunan</creator><creator>Ni, Aleksey</creator><creator>Raman, Senthil Kumar</creator><creator>Lim, Hankwon</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>202207</creationdate><title>Machine learning based prediction of subcooled bubble condensation behavior, validation with experimental and numerical results</title><author>Nagulapati, Vijay Mohan ; S Paramanantham, SalaiSargunan ; Ni, Aleksey ; Raman, Senthil Kumar ; Lim, Hankwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-521afcdf84ff42754828d40295c4f9228b10ddeddb0416a5948b4d6290776d383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bubble condensation prediction</topic><topic>Condensation</topic><topic>Diameters</topic><topic>Direct contact condensation</topic><topic>Gaussian process</topic><topic>Learning algorithms</topic><topic>Life cycles</topic><topic>Life history</topic><topic>Machine Learning</topic><topic>Mathematical models</topic><topic>Nuclear reactor</topic><topic>Subcooled flow boiling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagulapati, Vijay Mohan</creatorcontrib><creatorcontrib>S Paramanantham, SalaiSargunan</creatorcontrib><creatorcontrib>Ni, Aleksey</creatorcontrib><creatorcontrib>Raman, Senthil Kumar</creatorcontrib><creatorcontrib>Lim, Hankwon</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Nuclear engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagulapati, Vijay Mohan</au><au>S Paramanantham, SalaiSargunan</au><au>Ni, Aleksey</au><au>Raman, Senthil Kumar</au><au>Lim, Hankwon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning based prediction of subcooled bubble condensation behavior, validation with experimental and numerical results</atitle><jtitle>Nuclear engineering and design</jtitle><date>2022-07</date><risdate>2022</risdate><volume>393</volume><spage>111794</spage><pages>111794-</pages><artnum>111794</artnum><issn>0029-5493</issn><eissn>1872-759X</eissn><abstract>•Behavior study of subcooled single bubble condensing life-history.•Generated the datasets from both experiment and numerical results.•Trained the datasets to predict the bubble condensing history using ML.•Trained ML model used to predict condensing behavior of various bubble diameters. Measuring a full life cycle of condensing subcooled bubbles using either the experimental and/or numerical approaches is a very challenging problem. In present study this problem is solved through Machine Learning techniques using existing data sets from both experiment and numerical results. Two different machine leaning methods, Linear Regression (LR) and Gaussian Process Regression (GPR) are trained to predict the bubble condensing life-history. The models are trained with 70% of data and validated using 30 % data from the collected datasets. The predicted results are compared with both numerical and experimental results and model prediction obtained good agreement. Additionally, the validated machine learning models are used to predict various bubble diameters ranging between 1 and 6 mm. These predicted results give a much better understanding of subcooled bubble condensation behavior without the need for extensive experiments and numerical studies.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.nucengdes.2022.111794</doi></addata></record>
fulltext fulltext
identifier ISSN: 0029-5493
ispartof Nuclear engineering and design, 2022-07, Vol.393, p.111794, Article 111794
issn 0029-5493
1872-759X
language eng
recordid cdi_proquest_journals_2687835862
source ScienceDirect Freedom Collection (Elsevier)
subjects Bubble condensation prediction
Condensation
Diameters
Direct contact condensation
Gaussian process
Learning algorithms
Life cycles
Life history
Machine Learning
Mathematical models
Nuclear reactor
Subcooled flow boiling
title Machine learning based prediction of subcooled bubble condensation behavior, validation with experimental and numerical results
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A54%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20based%20prediction%20of%20subcooled%20bubble%20condensation%20behavior,%20validation%20with%20experimental%20and%20numerical%20results&rft.jtitle=Nuclear%20engineering%20and%20design&rft.au=Nagulapati,%20Vijay%20Mohan&rft.date=2022-07&rft.volume=393&rft.spage=111794&rft.pages=111794-&rft.artnum=111794&rft.issn=0029-5493&rft.eissn=1872-759X&rft_id=info:doi/10.1016/j.nucengdes.2022.111794&rft_dat=%3Cproquest_cross%3E2687835862%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2687835862&rft_id=info:pmid/&rft_els_id=S0029549322001480&rfr_iscdi=true