Machine learning based prediction of subcooled bubble condensation behavior, validation with experimental and numerical results
•Behavior study of subcooled single bubble condensing life-history.•Generated the datasets from both experiment and numerical results.•Trained the datasets to predict the bubble condensing history using ML.•Trained ML model used to predict condensing behavior of various bubble diameters. Measuring a...
Gespeichert in:
Veröffentlicht in: | Nuclear engineering and design 2022-07, Vol.393, p.111794, Article 111794 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 111794 |
container_title | Nuclear engineering and design |
container_volume | 393 |
creator | Nagulapati, Vijay Mohan S Paramanantham, SalaiSargunan Ni, Aleksey Raman, Senthil Kumar Lim, Hankwon |
description | •Behavior study of subcooled single bubble condensing life-history.•Generated the datasets from both experiment and numerical results.•Trained the datasets to predict the bubble condensing history using ML.•Trained ML model used to predict condensing behavior of various bubble diameters.
Measuring a full life cycle of condensing subcooled bubbles using either the experimental and/or numerical approaches is a very challenging problem. In present study this problem is solved through Machine Learning techniques using existing data sets from both experiment and numerical results. Two different machine leaning methods, Linear Regression (LR) and Gaussian Process Regression (GPR) are trained to predict the bubble condensing life-history. The models are trained with 70% of data and validated using 30 % data from the collected datasets. The predicted results are compared with both numerical and experimental results and model prediction obtained good agreement. Additionally, the validated machine learning models are used to predict various bubble diameters ranging between 1 and 6 mm. These predicted results give a much better understanding of subcooled bubble condensation behavior without the need for extensive experiments and numerical studies. |
doi_str_mv | 10.1016/j.nucengdes.2022.111794 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2687835862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0029549322001480</els_id><sourcerecordid>2687835862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-521afcdf84ff42754828d40295c4f9228b10ddeddb0416a5948b4d6290776d383</originalsourceid><addsrcrecordid>eNqFkE1rGzEQhkVJoY6b3xBBrllX0mpX2qMxSVpI6SWF3oQ-Zm2ZteRIu0566l-v3A25di7DvLzz9SB0TcmKEtp-2a_CZCFsHeQVI4ytKKWi4x_QgkrBKtF0vy7QghDWVQ3v6k_oMuc9OUfHFujPd213PgAeQKfgwxYbncHhYwLn7ehjwLHHeTI2xqHoZjJmAGxjcBCy_mcwsNMnH9MtPunBu1l88eMOw-sRkj9AGPWAdXA4TIci2FIlyNMw5s_oY6-HDFdveYl-3t89bb5Wjz8evm3Wj5Vloh6rhlHdW9dL3veciYZLJh0vPzWW9x1j0lDiHDhnCKetbjouDXct64gQratlvUQ389xjis8T5FHt45RCWalYK4WsG9my4hKzy6aYc4JeHcv5Ov1WlKgzbbVX77TVmbaaaZfO9dwJ5YmTh6Sy9RBsoZjAjspF_98ZfwG80499</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2687835862</pqid></control><display><type>article</type><title>Machine learning based prediction of subcooled bubble condensation behavior, validation with experimental and numerical results</title><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Nagulapati, Vijay Mohan ; S Paramanantham, SalaiSargunan ; Ni, Aleksey ; Raman, Senthil Kumar ; Lim, Hankwon</creator><creatorcontrib>Nagulapati, Vijay Mohan ; S Paramanantham, SalaiSargunan ; Ni, Aleksey ; Raman, Senthil Kumar ; Lim, Hankwon</creatorcontrib><description>•Behavior study of subcooled single bubble condensing life-history.•Generated the datasets from both experiment and numerical results.•Trained the datasets to predict the bubble condensing history using ML.•Trained ML model used to predict condensing behavior of various bubble diameters.
Measuring a full life cycle of condensing subcooled bubbles using either the experimental and/or numerical approaches is a very challenging problem. In present study this problem is solved through Machine Learning techniques using existing data sets from both experiment and numerical results. Two different machine leaning methods, Linear Regression (LR) and Gaussian Process Regression (GPR) are trained to predict the bubble condensing life-history. The models are trained with 70% of data and validated using 30 % data from the collected datasets. The predicted results are compared with both numerical and experimental results and model prediction obtained good agreement. Additionally, the validated machine learning models are used to predict various bubble diameters ranging between 1 and 6 mm. These predicted results give a much better understanding of subcooled bubble condensation behavior without the need for extensive experiments and numerical studies.</description><identifier>ISSN: 0029-5493</identifier><identifier>EISSN: 1872-759X</identifier><identifier>DOI: 10.1016/j.nucengdes.2022.111794</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bubble condensation prediction ; Condensation ; Diameters ; Direct contact condensation ; Gaussian process ; Learning algorithms ; Life cycles ; Life history ; Machine Learning ; Mathematical models ; Nuclear reactor ; Subcooled flow boiling</subject><ispartof>Nuclear engineering and design, 2022-07, Vol.393, p.111794, Article 111794</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-521afcdf84ff42754828d40295c4f9228b10ddeddb0416a5948b4d6290776d383</citedby><cites>FETCH-LOGICAL-c273t-521afcdf84ff42754828d40295c4f9228b10ddeddb0416a5948b4d6290776d383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0029549322001480$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Nagulapati, Vijay Mohan</creatorcontrib><creatorcontrib>S Paramanantham, SalaiSargunan</creatorcontrib><creatorcontrib>Ni, Aleksey</creatorcontrib><creatorcontrib>Raman, Senthil Kumar</creatorcontrib><creatorcontrib>Lim, Hankwon</creatorcontrib><title>Machine learning based prediction of subcooled bubble condensation behavior, validation with experimental and numerical results</title><title>Nuclear engineering and design</title><description>•Behavior study of subcooled single bubble condensing life-history.•Generated the datasets from both experiment and numerical results.•Trained the datasets to predict the bubble condensing history using ML.•Trained ML model used to predict condensing behavior of various bubble diameters.
Measuring a full life cycle of condensing subcooled bubbles using either the experimental and/or numerical approaches is a very challenging problem. In present study this problem is solved through Machine Learning techniques using existing data sets from both experiment and numerical results. Two different machine leaning methods, Linear Regression (LR) and Gaussian Process Regression (GPR) are trained to predict the bubble condensing life-history. The models are trained with 70% of data and validated using 30 % data from the collected datasets. The predicted results are compared with both numerical and experimental results and model prediction obtained good agreement. Additionally, the validated machine learning models are used to predict various bubble diameters ranging between 1 and 6 mm. These predicted results give a much better understanding of subcooled bubble condensation behavior without the need for extensive experiments and numerical studies.</description><subject>Bubble condensation prediction</subject><subject>Condensation</subject><subject>Diameters</subject><subject>Direct contact condensation</subject><subject>Gaussian process</subject><subject>Learning algorithms</subject><subject>Life cycles</subject><subject>Life history</subject><subject>Machine Learning</subject><subject>Mathematical models</subject><subject>Nuclear reactor</subject><subject>Subcooled flow boiling</subject><issn>0029-5493</issn><issn>1872-759X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rGzEQhkVJoY6b3xBBrllX0mpX2qMxSVpI6SWF3oQ-Zm2ZteRIu0566l-v3A25di7DvLzz9SB0TcmKEtp-2a_CZCFsHeQVI4ytKKWi4x_QgkrBKtF0vy7QghDWVQ3v6k_oMuc9OUfHFujPd213PgAeQKfgwxYbncHhYwLn7ehjwLHHeTI2xqHoZjJmAGxjcBCy_mcwsNMnH9MtPunBu1l88eMOw-sRkj9AGPWAdXA4TIci2FIlyNMw5s_oY6-HDFdveYl-3t89bb5Wjz8evm3Wj5Vloh6rhlHdW9dL3veciYZLJh0vPzWW9x1j0lDiHDhnCKetbjouDXct64gQratlvUQ389xjis8T5FHt45RCWalYK4WsG9my4hKzy6aYc4JeHcv5Ov1WlKgzbbVX77TVmbaaaZfO9dwJ5YmTh6Sy9RBsoZjAjspF_98ZfwG80499</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Nagulapati, Vijay Mohan</creator><creator>S Paramanantham, SalaiSargunan</creator><creator>Ni, Aleksey</creator><creator>Raman, Senthil Kumar</creator><creator>Lim, Hankwon</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>202207</creationdate><title>Machine learning based prediction of subcooled bubble condensation behavior, validation with experimental and numerical results</title><author>Nagulapati, Vijay Mohan ; S Paramanantham, SalaiSargunan ; Ni, Aleksey ; Raman, Senthil Kumar ; Lim, Hankwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-521afcdf84ff42754828d40295c4f9228b10ddeddb0416a5948b4d6290776d383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bubble condensation prediction</topic><topic>Condensation</topic><topic>Diameters</topic><topic>Direct contact condensation</topic><topic>Gaussian process</topic><topic>Learning algorithms</topic><topic>Life cycles</topic><topic>Life history</topic><topic>Machine Learning</topic><topic>Mathematical models</topic><topic>Nuclear reactor</topic><topic>Subcooled flow boiling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagulapati, Vijay Mohan</creatorcontrib><creatorcontrib>S Paramanantham, SalaiSargunan</creatorcontrib><creatorcontrib>Ni, Aleksey</creatorcontrib><creatorcontrib>Raman, Senthil Kumar</creatorcontrib><creatorcontrib>Lim, Hankwon</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Nuclear engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagulapati, Vijay Mohan</au><au>S Paramanantham, SalaiSargunan</au><au>Ni, Aleksey</au><au>Raman, Senthil Kumar</au><au>Lim, Hankwon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning based prediction of subcooled bubble condensation behavior, validation with experimental and numerical results</atitle><jtitle>Nuclear engineering and design</jtitle><date>2022-07</date><risdate>2022</risdate><volume>393</volume><spage>111794</spage><pages>111794-</pages><artnum>111794</artnum><issn>0029-5493</issn><eissn>1872-759X</eissn><abstract>•Behavior study of subcooled single bubble condensing life-history.•Generated the datasets from both experiment and numerical results.•Trained the datasets to predict the bubble condensing history using ML.•Trained ML model used to predict condensing behavior of various bubble diameters.
Measuring a full life cycle of condensing subcooled bubbles using either the experimental and/or numerical approaches is a very challenging problem. In present study this problem is solved through Machine Learning techniques using existing data sets from both experiment and numerical results. Two different machine leaning methods, Linear Regression (LR) and Gaussian Process Regression (GPR) are trained to predict the bubble condensing life-history. The models are trained with 70% of data and validated using 30 % data from the collected datasets. The predicted results are compared with both numerical and experimental results and model prediction obtained good agreement. Additionally, the validated machine learning models are used to predict various bubble diameters ranging between 1 and 6 mm. These predicted results give a much better understanding of subcooled bubble condensation behavior without the need for extensive experiments and numerical studies.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.nucengdes.2022.111794</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5493 |
ispartof | Nuclear engineering and design, 2022-07, Vol.393, p.111794, Article 111794 |
issn | 0029-5493 1872-759X |
language | eng |
recordid | cdi_proquest_journals_2687835862 |
source | ScienceDirect Freedom Collection (Elsevier) |
subjects | Bubble condensation prediction Condensation Diameters Direct contact condensation Gaussian process Learning algorithms Life cycles Life history Machine Learning Mathematical models Nuclear reactor Subcooled flow boiling |
title | Machine learning based prediction of subcooled bubble condensation behavior, validation with experimental and numerical results |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A54%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20based%20prediction%20of%20subcooled%20bubble%20condensation%20behavior,%20validation%20with%20experimental%20and%20numerical%20results&rft.jtitle=Nuclear%20engineering%20and%20design&rft.au=Nagulapati,%20Vijay%20Mohan&rft.date=2022-07&rft.volume=393&rft.spage=111794&rft.pages=111794-&rft.artnum=111794&rft.issn=0029-5493&rft.eissn=1872-759X&rft_id=info:doi/10.1016/j.nucengdes.2022.111794&rft_dat=%3Cproquest_cross%3E2687835862%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2687835862&rft_id=info:pmid/&rft_els_id=S0029549322001480&rfr_iscdi=true |