Microstructure evolution and corrosion behaviour of a high Mo containing α + β titanium alloy for biomedical applications

In the present work, effect of heat treatment on microstructure and corrosion behaviour of a high Mo containing α + β titanium alloy (Ti-6Al-1 V-4Mo-0.1Si) has been investigated. Heat treatment results in the formation of wide variety of microstructure depending on the heating temperature (below or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2022-08, Vol.912, p.165240, Article 165240
Hauptverfasser: Mahadule, Diksha, Khatirkar, Rajesh K., Gupta, Saurabh K., Gupta, Aman, Dandekar, Tushar R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 165240
container_title Journal of alloys and compounds
container_volume 912
creator Mahadule, Diksha
Khatirkar, Rajesh K.
Gupta, Saurabh K.
Gupta, Aman
Dandekar, Tushar R.
description In the present work, effect of heat treatment on microstructure and corrosion behaviour of a high Mo containing α + β titanium alloy (Ti-6Al-1 V-4Mo-0.1Si) has been investigated. Heat treatment results in the formation of wide variety of microstructure depending on the heating temperature (below or above the β transus) and cooling conditions. Martensite was observed after oil quenching (OQ), Widmanstatten α (αWS) + β after air cooling (AC) and lamellar α (αL) + β after furnace cooling (FC). The corrosion behaviour of the heat-treated specimens were studied in simulated body fluid (SBF) at 37 °C using open circuit potential-time (OCP), electrochemical impedance spectroscopy (EIS) and potentio-dynamic polarization tests. X-ray photoelectron spectroscopy (XPS) was used to investigate the chemical nature of the corroded surfaces. The study revealed that, in general, OQed samples had increased corrosion resistance than the ACed and FCed samples. XPS confirmed the presence of TiO2 and Al2O3 on the corroded sample. The alloy's improved corrosion resistance was attributed to stable inert TiO2 film. Samples heat treated at 950 °C were found to have better corrosion resistance in general. •Martensite, Widmanstannen α, Basketweaven α structure were formed after heat treatments.•All samples exhibited self-passivation behavior in simulated body fluid solution.•XPS analysis confirmed the presence of TiO2 and Al2O3 layer.•The oxide film consisted of two layers i.e., outer porous layer and inner barrier layer.•Heat treatment in α + β region showed optimum corrosion properties.
doi_str_mv 10.1016/j.jallcom.2022.165240
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2687835692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838822016310</els_id><sourcerecordid>2687835692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-c509f3bda66ac4d51934669cdcb3731b022473fe53aa3071e02027225209e5213</originalsourceid><addsrcrecordid>eNqFkEtOwzAQhi0EEqVwBCRLLFGCH3EeK4QqXlIrNrC2HMdpHSVxcJxKLLhLrwBH6AF6Jhyle1bjkf9_Zv4PgGuMQoxwfFeFlahraZqQIEJCHDMSoRMww2lCgyiOs1MwQxlhQUrT9Bxc9H2FEMIZxTPwvdLSmt7ZQbrBKqi2ph6cNi0UbQGlsf5z7HK1EVttBgtNCQXc6PUGrowXtE7oVrdrePjZ7273u8MvdNqJVg8N9FeZL1gaC3NtGlVoKWoouq72j3FHfwnOSlH36upY5-Dj6fF98RIs355fFw_LQBJGXCAZykqaFyKOhYwK5k8fY8lC5jShOPepo4SWilEhKEqwQh5EQrwXZYoRTOfgZprbWfM5qN7xykdp_UpO4jRJKYsz4lVsUo1EeqtK3lndCPvFMeIjaV7xI2k-kuYTae-7n3zKR9hqZXkvtWqlD2yVdLww-p8Jfx7PjdI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2687835692</pqid></control><display><type>article</type><title>Microstructure evolution and corrosion behaviour of a high Mo containing α + β titanium alloy for biomedical applications</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Mahadule, Diksha ; Khatirkar, Rajesh K. ; Gupta, Saurabh K. ; Gupta, Aman ; Dandekar, Tushar R.</creator><creatorcontrib>Mahadule, Diksha ; Khatirkar, Rajesh K. ; Gupta, Saurabh K. ; Gupta, Aman ; Dandekar, Tushar R.</creatorcontrib><description>In the present work, effect of heat treatment on microstructure and corrosion behaviour of a high Mo containing α + β titanium alloy (Ti-6Al-1 V-4Mo-0.1Si) has been investigated. Heat treatment results in the formation of wide variety of microstructure depending on the heating temperature (below or above the β transus) and cooling conditions. Martensite was observed after oil quenching (OQ), Widmanstatten α (αWS) + β after air cooling (AC) and lamellar α (αL) + β after furnace cooling (FC). The corrosion behaviour of the heat-treated specimens were studied in simulated body fluid (SBF) at 37 °C using open circuit potential-time (OCP), electrochemical impedance spectroscopy (EIS) and potentio-dynamic polarization tests. X-ray photoelectron spectroscopy (XPS) was used to investigate the chemical nature of the corroded surfaces. The study revealed that, in general, OQed samples had increased corrosion resistance than the ACed and FCed samples. XPS confirmed the presence of TiO2 and Al2O3 on the corroded sample. The alloy's improved corrosion resistance was attributed to stable inert TiO2 film. Samples heat treated at 950 °C were found to have better corrosion resistance in general. •Martensite, Widmanstannen α, Basketweaven α structure were formed after heat treatments.•All samples exhibited self-passivation behavior in simulated body fluid solution.•XPS analysis confirmed the presence of TiO2 and Al2O3 layer.•The oxide film consisted of two layers i.e., outer porous layer and inner barrier layer.•Heat treatment in α + β region showed optimum corrosion properties.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2022.165240</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Air cooling ; Aluminum oxide ; Biomedical materials ; Body fluids ; Cooling ; Corrosion ; Corrosion effects ; Corrosion resistance ; Corrosion resistant alloys ; EIS ; Electrochemical impedance spectroscopy ; Heat treatment ; Martensite ; Microstructure ; Molybdenum ; Oil quenching ; Open circuit voltage ; Photoelectrons ; Potentio-dynamic polarization ; Spectrum analysis ; Titanium alloys ; Titanium base alloys ; Titanium dioxide ; Widmanstatten structure ; X ray photoelectron spectroscopy</subject><ispartof>Journal of alloys and compounds, 2022-08, Vol.912, p.165240, Article 165240</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-c509f3bda66ac4d51934669cdcb3731b022473fe53aa3071e02027225209e5213</citedby><cites>FETCH-LOGICAL-c252t-c509f3bda66ac4d51934669cdcb3731b022473fe53aa3071e02027225209e5213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2022.165240$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Mahadule, Diksha</creatorcontrib><creatorcontrib>Khatirkar, Rajesh K.</creatorcontrib><creatorcontrib>Gupta, Saurabh K.</creatorcontrib><creatorcontrib>Gupta, Aman</creatorcontrib><creatorcontrib>Dandekar, Tushar R.</creatorcontrib><title>Microstructure evolution and corrosion behaviour of a high Mo containing α + β titanium alloy for biomedical applications</title><title>Journal of alloys and compounds</title><description>In the present work, effect of heat treatment on microstructure and corrosion behaviour of a high Mo containing α + β titanium alloy (Ti-6Al-1 V-4Mo-0.1Si) has been investigated. Heat treatment results in the formation of wide variety of microstructure depending on the heating temperature (below or above the β transus) and cooling conditions. Martensite was observed after oil quenching (OQ), Widmanstatten α (αWS) + β after air cooling (AC) and lamellar α (αL) + β after furnace cooling (FC). The corrosion behaviour of the heat-treated specimens were studied in simulated body fluid (SBF) at 37 °C using open circuit potential-time (OCP), electrochemical impedance spectroscopy (EIS) and potentio-dynamic polarization tests. X-ray photoelectron spectroscopy (XPS) was used to investigate the chemical nature of the corroded surfaces. The study revealed that, in general, OQed samples had increased corrosion resistance than the ACed and FCed samples. XPS confirmed the presence of TiO2 and Al2O3 on the corroded sample. The alloy's improved corrosion resistance was attributed to stable inert TiO2 film. Samples heat treated at 950 °C were found to have better corrosion resistance in general. •Martensite, Widmanstannen α, Basketweaven α structure were formed after heat treatments.•All samples exhibited self-passivation behavior in simulated body fluid solution.•XPS analysis confirmed the presence of TiO2 and Al2O3 layer.•The oxide film consisted of two layers i.e., outer porous layer and inner barrier layer.•Heat treatment in α + β region showed optimum corrosion properties.</description><subject>Air cooling</subject><subject>Aluminum oxide</subject><subject>Biomedical materials</subject><subject>Body fluids</subject><subject>Cooling</subject><subject>Corrosion</subject><subject>Corrosion effects</subject><subject>Corrosion resistance</subject><subject>Corrosion resistant alloys</subject><subject>EIS</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Heat treatment</subject><subject>Martensite</subject><subject>Microstructure</subject><subject>Molybdenum</subject><subject>Oil quenching</subject><subject>Open circuit voltage</subject><subject>Photoelectrons</subject><subject>Potentio-dynamic polarization</subject><subject>Spectrum analysis</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Titanium dioxide</subject><subject>Widmanstatten structure</subject><subject>X ray photoelectron spectroscopy</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEtOwzAQhi0EEqVwBCRLLFGCH3EeK4QqXlIrNrC2HMdpHSVxcJxKLLhLrwBH6AF6Jhyle1bjkf9_Zv4PgGuMQoxwfFeFlahraZqQIEJCHDMSoRMww2lCgyiOs1MwQxlhQUrT9Bxc9H2FEMIZxTPwvdLSmt7ZQbrBKqi2ph6cNi0UbQGlsf5z7HK1EVttBgtNCQXc6PUGrowXtE7oVrdrePjZ7273u8MvdNqJVg8N9FeZL1gaC3NtGlVoKWoouq72j3FHfwnOSlH36upY5-Dj6fF98RIs355fFw_LQBJGXCAZykqaFyKOhYwK5k8fY8lC5jShOPepo4SWilEhKEqwQh5EQrwXZYoRTOfgZprbWfM5qN7xykdp_UpO4jRJKYsz4lVsUo1EeqtK3lndCPvFMeIjaV7xI2k-kuYTae-7n3zKR9hqZXkvtWqlD2yVdLww-p8Jfx7PjdI</recordid><startdate>20220815</startdate><enddate>20220815</enddate><creator>Mahadule, Diksha</creator><creator>Khatirkar, Rajesh K.</creator><creator>Gupta, Saurabh K.</creator><creator>Gupta, Aman</creator><creator>Dandekar, Tushar R.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220815</creationdate><title>Microstructure evolution and corrosion behaviour of a high Mo containing α + β titanium alloy for biomedical applications</title><author>Mahadule, Diksha ; Khatirkar, Rajesh K. ; Gupta, Saurabh K. ; Gupta, Aman ; Dandekar, Tushar R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-c509f3bda66ac4d51934669cdcb3731b022473fe53aa3071e02027225209e5213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air cooling</topic><topic>Aluminum oxide</topic><topic>Biomedical materials</topic><topic>Body fluids</topic><topic>Cooling</topic><topic>Corrosion</topic><topic>Corrosion effects</topic><topic>Corrosion resistance</topic><topic>Corrosion resistant alloys</topic><topic>EIS</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Heat treatment</topic><topic>Martensite</topic><topic>Microstructure</topic><topic>Molybdenum</topic><topic>Oil quenching</topic><topic>Open circuit voltage</topic><topic>Photoelectrons</topic><topic>Potentio-dynamic polarization</topic><topic>Spectrum analysis</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Titanium dioxide</topic><topic>Widmanstatten structure</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahadule, Diksha</creatorcontrib><creatorcontrib>Khatirkar, Rajesh K.</creatorcontrib><creatorcontrib>Gupta, Saurabh K.</creatorcontrib><creatorcontrib>Gupta, Aman</creatorcontrib><creatorcontrib>Dandekar, Tushar R.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahadule, Diksha</au><au>Khatirkar, Rajesh K.</au><au>Gupta, Saurabh K.</au><au>Gupta, Aman</au><au>Dandekar, Tushar R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure evolution and corrosion behaviour of a high Mo containing α + β titanium alloy for biomedical applications</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2022-08-15</date><risdate>2022</risdate><volume>912</volume><spage>165240</spage><pages>165240-</pages><artnum>165240</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>In the present work, effect of heat treatment on microstructure and corrosion behaviour of a high Mo containing α + β titanium alloy (Ti-6Al-1 V-4Mo-0.1Si) has been investigated. Heat treatment results in the formation of wide variety of microstructure depending on the heating temperature (below or above the β transus) and cooling conditions. Martensite was observed after oil quenching (OQ), Widmanstatten α (αWS) + β after air cooling (AC) and lamellar α (αL) + β after furnace cooling (FC). The corrosion behaviour of the heat-treated specimens were studied in simulated body fluid (SBF) at 37 °C using open circuit potential-time (OCP), electrochemical impedance spectroscopy (EIS) and potentio-dynamic polarization tests. X-ray photoelectron spectroscopy (XPS) was used to investigate the chemical nature of the corroded surfaces. The study revealed that, in general, OQed samples had increased corrosion resistance than the ACed and FCed samples. XPS confirmed the presence of TiO2 and Al2O3 on the corroded sample. The alloy's improved corrosion resistance was attributed to stable inert TiO2 film. Samples heat treated at 950 °C were found to have better corrosion resistance in general. •Martensite, Widmanstannen α, Basketweaven α structure were formed after heat treatments.•All samples exhibited self-passivation behavior in simulated body fluid solution.•XPS analysis confirmed the presence of TiO2 and Al2O3 layer.•The oxide film consisted of two layers i.e., outer porous layer and inner barrier layer.•Heat treatment in α + β region showed optimum corrosion properties.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2022.165240</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2022-08, Vol.912, p.165240, Article 165240
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2687835692
source Elsevier ScienceDirect Journals Complete
subjects Air cooling
Aluminum oxide
Biomedical materials
Body fluids
Cooling
Corrosion
Corrosion effects
Corrosion resistance
Corrosion resistant alloys
EIS
Electrochemical impedance spectroscopy
Heat treatment
Martensite
Microstructure
Molybdenum
Oil quenching
Open circuit voltage
Photoelectrons
Potentio-dynamic polarization
Spectrum analysis
Titanium alloys
Titanium base alloys
Titanium dioxide
Widmanstatten structure
X ray photoelectron spectroscopy
title Microstructure evolution and corrosion behaviour of a high Mo containing α + β titanium alloy for biomedical applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A41%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20evolution%20and%20corrosion%20behaviour%20of%20a%20high%20Mo%20containing%20%CE%B1%C2%A0+%C2%A0%CE%B2%20titanium%20alloy%20for%20biomedical%20applications&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Mahadule,%20Diksha&rft.date=2022-08-15&rft.volume=912&rft.spage=165240&rft.pages=165240-&rft.artnum=165240&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2022.165240&rft_dat=%3Cproquest_cross%3E2687835692%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2687835692&rft_id=info:pmid/&rft_els_id=S0925838822016310&rfr_iscdi=true