Design, fabrication and test of a bulk SiC MEMS accelerometer

The application of micro accelerometer in extremely high temperature environment has become an urgent problem to be solved. However, current microelectromechanical system (MEMS) Si-based accelerometer cannot adapt to higher temperatures than 500 °C. Because of its excellent properties in high temper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microelectronic engineering 2022-05, Vol.260, p.111793, Article 111793
Hauptverfasser: Zhai, Yanxin, Li, Haiwang, Tao, Zhi, Cao, Xiaoda, Yang, Chunhui, Che, Zhizhao, Xu, Tiantong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 111793
container_title Microelectronic engineering
container_volume 260
creator Zhai, Yanxin
Li, Haiwang
Tao, Zhi
Cao, Xiaoda
Yang, Chunhui
Che, Zhizhao
Xu, Tiantong
description The application of micro accelerometer in extremely high temperature environment has become an urgent problem to be solved. However, current microelectromechanical system (MEMS) Si-based accelerometer cannot adapt to higher temperatures than 500 °C. Because of its excellent properties in high temperature environments, silicon carbide (SiC) shows promising potential in development of high temperature MEMS sensors, and it is a good alternative to Si for developing accelerometers. Due to the difficulty of bulk-SiC fabrication process and the complex structure of MEMS accelerometers, there are few studies on bulk SiC accelerometers and few test data of the performance. In this study, in order to solve the problem of fabrication, a MEMS accelerometer based on bulk SiC processing technology is designed, and fabricated. The sensor is fabricated using a 4H-SiC wafer and adopts the classic elastic beam-proof mass structure. The top surface of the wafer is a doped N-type SiC epitaxial layer that is used as piezoresistive material to develop sensitive resistance. Ultra-thin (20 μm) elastic beams obtained using dry etching form the sensitive mechanical structure to realize a high-sensitivity output in low/medium-g-value environments. The static flip and dynamic vibration experiments show that the final sensor can test low/medium-g-value acceleration signals precisely. Finally, the dynamic sensitivity obtained is 0.21 mV/g under 5 V input voltage and the linearity is 99.8%. This work has potential value for promoting the practical application of fabrication of bulk micromachined SiC in accelerometer, and the test data can provide guidance for future design of bulk SiC piezoresistive sensors. [Display omitted] •Fabricate a MEMS accelerometer with high sensitivity using bulk-SiC process.•Solve some key fabrication problems of SiC-based 3D MEMS such as carbon deposition and high temperature metallization.•The whole bulk-SiC sensor is tested and analyzed in a low g-value environment.
doi_str_mv 10.1016/j.mee.2022.111793
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2687833895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167931722000879</els_id><sourcerecordid>2687833895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-df410b2cecc9494adc1df0b168bd04325fadda7e8f980e70ec68f928a8c35ae73</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwA7hZ4kqCH0nsCHFApTykVhwKZ8ux18ihSYqdIvHvcRXOnHZWmtkdfQhdUpJTQqubNu8AckYYyymlouZHaEal4FlZVvIYzZJHZDWn4hSdxdiStBdEztDdA0T_0V9jp5vgjR790GPdWzxCHPHgsMbNfvuJN36B18v1BmtjYAth6GCEcI5OnN5GuPibc_T-uHxbPGer16eXxf0qM6wsx8y6gpKGGTCmLupCW0OtIw2tZGNJwVnptLVagHS1JCAImCpJJrU0vNQg-BxdTXd3Yfjap2aqHfahTy8Vq6SQnMu6TC46uUwYYgzg1C74TocfRYk6UFKtSpTUgZKaKKXM7ZSBVP_bQ1DReOgNWB_AjMoO_p_0L3sGbkE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2687833895</pqid></control><display><type>article</type><title>Design, fabrication and test of a bulk SiC MEMS accelerometer</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Zhai, Yanxin ; Li, Haiwang ; Tao, Zhi ; Cao, Xiaoda ; Yang, Chunhui ; Che, Zhizhao ; Xu, Tiantong</creator><creatorcontrib>Zhai, Yanxin ; Li, Haiwang ; Tao, Zhi ; Cao, Xiaoda ; Yang, Chunhui ; Che, Zhizhao ; Xu, Tiantong</creatorcontrib><description>The application of micro accelerometer in extremely high temperature environment has become an urgent problem to be solved. However, current microelectromechanical system (MEMS) Si-based accelerometer cannot adapt to higher temperatures than 500 °C. Because of its excellent properties in high temperature environments, silicon carbide (SiC) shows promising potential in development of high temperature MEMS sensors, and it is a good alternative to Si for developing accelerometers. Due to the difficulty of bulk-SiC fabrication process and the complex structure of MEMS accelerometers, there are few studies on bulk SiC accelerometers and few test data of the performance. In this study, in order to solve the problem of fabrication, a MEMS accelerometer based on bulk SiC processing technology is designed, and fabricated. The sensor is fabricated using a 4H-SiC wafer and adopts the classic elastic beam-proof mass structure. The top surface of the wafer is a doped N-type SiC epitaxial layer that is used as piezoresistive material to develop sensitive resistance. Ultra-thin (20 μm) elastic beams obtained using dry etching form the sensitive mechanical structure to realize a high-sensitivity output in low/medium-g-value environments. The static flip and dynamic vibration experiments show that the final sensor can test low/medium-g-value acceleration signals precisely. Finally, the dynamic sensitivity obtained is 0.21 mV/g under 5 V input voltage and the linearity is 99.8%. This work has potential value for promoting the practical application of fabrication of bulk micromachined SiC in accelerometer, and the test data can provide guidance for future design of bulk SiC piezoresistive sensors. [Display omitted] •Fabricate a MEMS accelerometer with high sensitivity using bulk-SiC process.•Solve some key fabrication problems of SiC-based 3D MEMS such as carbon deposition and high temperature metallization.•The whole bulk-SiC sensor is tested and analyzed in a low g-value environment.</description><identifier>ISSN: 0167-9317</identifier><identifier>EISSN: 1873-5568</identifier><identifier>DOI: 10.1016/j.mee.2022.111793</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Accelerometer ; Accelerometers ; Elastic beams ; Fabrication ; High temperature environments ; MEMS ; Microelectromechanical systems ; Micromachining ; Sensitivity ; Sensors ; Silicon carbide ; Vibration</subject><ispartof>Microelectronic engineering, 2022-05, Vol.260, p.111793, Article 111793</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c255t-df410b2cecc9494adc1df0b168bd04325fadda7e8f980e70ec68f928a8c35ae73</citedby><cites>FETCH-LOGICAL-c255t-df410b2cecc9494adc1df0b168bd04325fadda7e8f980e70ec68f928a8c35ae73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mee.2022.111793$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Zhai, Yanxin</creatorcontrib><creatorcontrib>Li, Haiwang</creatorcontrib><creatorcontrib>Tao, Zhi</creatorcontrib><creatorcontrib>Cao, Xiaoda</creatorcontrib><creatorcontrib>Yang, Chunhui</creatorcontrib><creatorcontrib>Che, Zhizhao</creatorcontrib><creatorcontrib>Xu, Tiantong</creatorcontrib><title>Design, fabrication and test of a bulk SiC MEMS accelerometer</title><title>Microelectronic engineering</title><description>The application of micro accelerometer in extremely high temperature environment has become an urgent problem to be solved. However, current microelectromechanical system (MEMS) Si-based accelerometer cannot adapt to higher temperatures than 500 °C. Because of its excellent properties in high temperature environments, silicon carbide (SiC) shows promising potential in development of high temperature MEMS sensors, and it is a good alternative to Si for developing accelerometers. Due to the difficulty of bulk-SiC fabrication process and the complex structure of MEMS accelerometers, there are few studies on bulk SiC accelerometers and few test data of the performance. In this study, in order to solve the problem of fabrication, a MEMS accelerometer based on bulk SiC processing technology is designed, and fabricated. The sensor is fabricated using a 4H-SiC wafer and adopts the classic elastic beam-proof mass structure. The top surface of the wafer is a doped N-type SiC epitaxial layer that is used as piezoresistive material to develop sensitive resistance. Ultra-thin (20 μm) elastic beams obtained using dry etching form the sensitive mechanical structure to realize a high-sensitivity output in low/medium-g-value environments. The static flip and dynamic vibration experiments show that the final sensor can test low/medium-g-value acceleration signals precisely. Finally, the dynamic sensitivity obtained is 0.21 mV/g under 5 V input voltage and the linearity is 99.8%. This work has potential value for promoting the practical application of fabrication of bulk micromachined SiC in accelerometer, and the test data can provide guidance for future design of bulk SiC piezoresistive sensors. [Display omitted] •Fabricate a MEMS accelerometer with high sensitivity using bulk-SiC process.•Solve some key fabrication problems of SiC-based 3D MEMS such as carbon deposition and high temperature metallization.•The whole bulk-SiC sensor is tested and analyzed in a low g-value environment.</description><subject>Accelerometer</subject><subject>Accelerometers</subject><subject>Elastic beams</subject><subject>Fabrication</subject><subject>High temperature environments</subject><subject>MEMS</subject><subject>Microelectromechanical systems</subject><subject>Micromachining</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Silicon carbide</subject><subject>Vibration</subject><issn>0167-9317</issn><issn>1873-5568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwA7hZ4kqCH0nsCHFApTykVhwKZ8ux18ihSYqdIvHvcRXOnHZWmtkdfQhdUpJTQqubNu8AckYYyymlouZHaEal4FlZVvIYzZJHZDWn4hSdxdiStBdEztDdA0T_0V9jp5vgjR790GPdWzxCHPHgsMbNfvuJN36B18v1BmtjYAth6GCEcI5OnN5GuPibc_T-uHxbPGer16eXxf0qM6wsx8y6gpKGGTCmLupCW0OtIw2tZGNJwVnptLVagHS1JCAImCpJJrU0vNQg-BxdTXd3Yfjap2aqHfahTy8Vq6SQnMu6TC46uUwYYgzg1C74TocfRYk6UFKtSpTUgZKaKKXM7ZSBVP_bQ1DReOgNWB_AjMoO_p_0L3sGbkE</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Zhai, Yanxin</creator><creator>Li, Haiwang</creator><creator>Tao, Zhi</creator><creator>Cao, Xiaoda</creator><creator>Yang, Chunhui</creator><creator>Che, Zhizhao</creator><creator>Xu, Tiantong</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20220501</creationdate><title>Design, fabrication and test of a bulk SiC MEMS accelerometer</title><author>Zhai, Yanxin ; Li, Haiwang ; Tao, Zhi ; Cao, Xiaoda ; Yang, Chunhui ; Che, Zhizhao ; Xu, Tiantong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-df410b2cecc9494adc1df0b168bd04325fadda7e8f980e70ec68f928a8c35ae73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accelerometer</topic><topic>Accelerometers</topic><topic>Elastic beams</topic><topic>Fabrication</topic><topic>High temperature environments</topic><topic>MEMS</topic><topic>Microelectromechanical systems</topic><topic>Micromachining</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Silicon carbide</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Yanxin</creatorcontrib><creatorcontrib>Li, Haiwang</creatorcontrib><creatorcontrib>Tao, Zhi</creatorcontrib><creatorcontrib>Cao, Xiaoda</creatorcontrib><creatorcontrib>Yang, Chunhui</creatorcontrib><creatorcontrib>Che, Zhizhao</creatorcontrib><creatorcontrib>Xu, Tiantong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microelectronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhai, Yanxin</au><au>Li, Haiwang</au><au>Tao, Zhi</au><au>Cao, Xiaoda</au><au>Yang, Chunhui</au><au>Che, Zhizhao</au><au>Xu, Tiantong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design, fabrication and test of a bulk SiC MEMS accelerometer</atitle><jtitle>Microelectronic engineering</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>260</volume><spage>111793</spage><pages>111793-</pages><artnum>111793</artnum><issn>0167-9317</issn><eissn>1873-5568</eissn><abstract>The application of micro accelerometer in extremely high temperature environment has become an urgent problem to be solved. However, current microelectromechanical system (MEMS) Si-based accelerometer cannot adapt to higher temperatures than 500 °C. Because of its excellent properties in high temperature environments, silicon carbide (SiC) shows promising potential in development of high temperature MEMS sensors, and it is a good alternative to Si for developing accelerometers. Due to the difficulty of bulk-SiC fabrication process and the complex structure of MEMS accelerometers, there are few studies on bulk SiC accelerometers and few test data of the performance. In this study, in order to solve the problem of fabrication, a MEMS accelerometer based on bulk SiC processing technology is designed, and fabricated. The sensor is fabricated using a 4H-SiC wafer and adopts the classic elastic beam-proof mass structure. The top surface of the wafer is a doped N-type SiC epitaxial layer that is used as piezoresistive material to develop sensitive resistance. Ultra-thin (20 μm) elastic beams obtained using dry etching form the sensitive mechanical structure to realize a high-sensitivity output in low/medium-g-value environments. The static flip and dynamic vibration experiments show that the final sensor can test low/medium-g-value acceleration signals precisely. Finally, the dynamic sensitivity obtained is 0.21 mV/g under 5 V input voltage and the linearity is 99.8%. This work has potential value for promoting the practical application of fabrication of bulk micromachined SiC in accelerometer, and the test data can provide guidance for future design of bulk SiC piezoresistive sensors. [Display omitted] •Fabricate a MEMS accelerometer with high sensitivity using bulk-SiC process.•Solve some key fabrication problems of SiC-based 3D MEMS such as carbon deposition and high temperature metallization.•The whole bulk-SiC sensor is tested and analyzed in a low g-value environment.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.mee.2022.111793</doi></addata></record>
fulltext fulltext
identifier ISSN: 0167-9317
ispartof Microelectronic engineering, 2022-05, Vol.260, p.111793, Article 111793
issn 0167-9317
1873-5568
language eng
recordid cdi_proquest_journals_2687833895
source ScienceDirect Journals (5 years ago - present)
subjects Accelerometer
Accelerometers
Elastic beams
Fabrication
High temperature environments
MEMS
Microelectromechanical systems
Micromachining
Sensitivity
Sensors
Silicon carbide
Vibration
title Design, fabrication and test of a bulk SiC MEMS accelerometer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A48%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design,%20fabrication%20and%20test%20of%20a%20bulk%20SiC%20MEMS%20accelerometer&rft.jtitle=Microelectronic%20engineering&rft.au=Zhai,%20Yanxin&rft.date=2022-05-01&rft.volume=260&rft.spage=111793&rft.pages=111793-&rft.artnum=111793&rft.issn=0167-9317&rft.eissn=1873-5568&rft_id=info:doi/10.1016/j.mee.2022.111793&rft_dat=%3Cproquest_cross%3E2687833895%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2687833895&rft_id=info:pmid/&rft_els_id=S0167931722000879&rfr_iscdi=true