A review and assessment of importance sampling methods for reliability analysis

This paper reviews the mathematical foundation of the importance sampling technique and discusses two general classes of methods to construct the importance sampling density (or probability measure) for reliability analysis. The paper first explains the failure probability estimator of the importanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural safety 2022-07, Vol.97, p.102216, Article 102216
Hauptverfasser: Tabandeh, Armin, Jia, Gaofeng, Gardoni, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 102216
container_title Structural safety
container_volume 97
creator Tabandeh, Armin
Jia, Gaofeng
Gardoni, Paolo
description This paper reviews the mathematical foundation of the importance sampling technique and discusses two general classes of methods to construct the importance sampling density (or probability measure) for reliability analysis. The paper first explains the failure probability estimator of the importance sampling technique, its statistical properties, and computational complexity. The optimal but not implementable importance sampling density, derived from the variational calculus, is the starting point of the two general classes of importance sampling methods. For time-variant reliability analysis, the optimal but not implementable stochastic control is derived that induces the corresponding optimal importance sampling probability measure. In the first class, the optimal importance sampling density is directly approximated by a member of a family of parametric or nonparametric probability density functions. This approximation requires defining the family of approximating probability densities, a measure of distance between two probability densities, and an optimization algorithm. In the second class, the approximating importance sampling density has the general functional form of the optimal solution. The approximation amounts to replacing the limit-state function with a computationally convenient surrogate. The paper then explores the performances of the two classes of importance sampling methods through several benchmark numerical examples. The challenges and future directions of the importance sampling technique are also discussed. •The mathematical foundation of the importance sampling (IS) technique is explained.•Failure probability estimators, their statistical properties, and computational complexity are presented.•Two classes of IS methods, called density and limit-state approximation methods, are explained.•The performances of the IS methods are explored through benchmark numerical examples.•The challenges and future directions of the IS methods are discussed.
doi_str_mv 10.1016/j.strusafe.2022.102216
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2687832245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167473022000297</els_id><sourcerecordid>2687832245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-94a4d565ef802de16270ec70bc29aa8133678e68de27619fd2027f880784ffe13</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouH78BQl47pqkbZLeXBa_YGEveg7ZZqIp_TLTVfbfm6V69jQwvM_LzEPIDWdLzri8a5Y4xT1aD0vBhEhLIbg8IQuuVZXleVmekkUKqqxQOTsnF4gNY6zUQi_IdkUjfAX4prZ31CICYgf9RAdPQzcOcbJ9DRRtN7ahf6cdTB-DQ-qHmMA22F1ow3RItG0PGPCKnHnbIlz_zkvy9vjwun7ONtunl_Vqk9V5waasKmzhSlmC10w44FIoBrViu1pU1mqe51JpkNqBUJJX3qXPlNeaKV14Dzy_JLdz7xiHzz3gZJphH9MRaITUSudCFGVKyTlVxwExgjdjDJ2NB8OZOcozjfmTZ47yzCwvgfczCOmHpCcarAMkEy5EqCfjhvBfxQ9IIHvR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2687832245</pqid></control><display><type>article</type><title>A review and assessment of importance sampling methods for reliability analysis</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Tabandeh, Armin ; Jia, Gaofeng ; Gardoni, Paolo</creator><creatorcontrib>Tabandeh, Armin ; Jia, Gaofeng ; Gardoni, Paolo</creatorcontrib><description>This paper reviews the mathematical foundation of the importance sampling technique and discusses two general classes of methods to construct the importance sampling density (or probability measure) for reliability analysis. The paper first explains the failure probability estimator of the importance sampling technique, its statistical properties, and computational complexity. The optimal but not implementable importance sampling density, derived from the variational calculus, is the starting point of the two general classes of importance sampling methods. For time-variant reliability analysis, the optimal but not implementable stochastic control is derived that induces the corresponding optimal importance sampling probability measure. In the first class, the optimal importance sampling density is directly approximated by a member of a family of parametric or nonparametric probability density functions. This approximation requires defining the family of approximating probability densities, a measure of distance between two probability densities, and an optimization algorithm. In the second class, the approximating importance sampling density has the general functional form of the optimal solution. The approximation amounts to replacing the limit-state function with a computationally convenient surrogate. The paper then explores the performances of the two classes of importance sampling methods through several benchmark numerical examples. The challenges and future directions of the importance sampling technique are also discussed. •The mathematical foundation of the importance sampling (IS) technique is explained.•Failure probability estimators, their statistical properties, and computational complexity are presented.•Two classes of IS methods, called density and limit-state approximation methods, are explained.•The performances of the IS methods are explored through benchmark numerical examples.•The challenges and future directions of the IS methods are discussed.</description><identifier>ISSN: 0167-4730</identifier><identifier>EISSN: 1879-3355</identifier><identifier>DOI: 10.1016/j.strusafe.2022.102216</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Algorithms ; Approximation ; Calculus of variations ; Computer applications ; Failure analysis ; Gaussian mixture ; Importance sampling ; Kernel density estimation ; Limit states ; Mathematical analysis ; Numerical methods ; Optimal control ; Optimization ; Probability density functions ; Reliability analysis ; Sampling ; Sampling methods ; Sampling techniques ; Statistical analysis ; Stochastic processes ; Surrogate</subject><ispartof>Structural safety, 2022-07, Vol.97, p.102216, Article 102216</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-94a4d565ef802de16270ec70bc29aa8133678e68de27619fd2027f880784ffe13</citedby><cites>FETCH-LOGICAL-c340t-94a4d565ef802de16270ec70bc29aa8133678e68de27619fd2027f880784ffe13</cites><orcidid>0000-0003-3662-6569 ; 0000-0001-9419-8481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167473022000297$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Tabandeh, Armin</creatorcontrib><creatorcontrib>Jia, Gaofeng</creatorcontrib><creatorcontrib>Gardoni, Paolo</creatorcontrib><title>A review and assessment of importance sampling methods for reliability analysis</title><title>Structural safety</title><description>This paper reviews the mathematical foundation of the importance sampling technique and discusses two general classes of methods to construct the importance sampling density (or probability measure) for reliability analysis. The paper first explains the failure probability estimator of the importance sampling technique, its statistical properties, and computational complexity. The optimal but not implementable importance sampling density, derived from the variational calculus, is the starting point of the two general classes of importance sampling methods. For time-variant reliability analysis, the optimal but not implementable stochastic control is derived that induces the corresponding optimal importance sampling probability measure. In the first class, the optimal importance sampling density is directly approximated by a member of a family of parametric or nonparametric probability density functions. This approximation requires defining the family of approximating probability densities, a measure of distance between two probability densities, and an optimization algorithm. In the second class, the approximating importance sampling density has the general functional form of the optimal solution. The approximation amounts to replacing the limit-state function with a computationally convenient surrogate. The paper then explores the performances of the two classes of importance sampling methods through several benchmark numerical examples. The challenges and future directions of the importance sampling technique are also discussed. •The mathematical foundation of the importance sampling (IS) technique is explained.•Failure probability estimators, their statistical properties, and computational complexity are presented.•Two classes of IS methods, called density and limit-state approximation methods, are explained.•The performances of the IS methods are explored through benchmark numerical examples.•The challenges and future directions of the IS methods are discussed.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Calculus of variations</subject><subject>Computer applications</subject><subject>Failure analysis</subject><subject>Gaussian mixture</subject><subject>Importance sampling</subject><subject>Kernel density estimation</subject><subject>Limit states</subject><subject>Mathematical analysis</subject><subject>Numerical methods</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Probability density functions</subject><subject>Reliability analysis</subject><subject>Sampling</subject><subject>Sampling methods</subject><subject>Sampling techniques</subject><subject>Statistical analysis</subject><subject>Stochastic processes</subject><subject>Surrogate</subject><issn>0167-4730</issn><issn>1879-3355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouH78BQl47pqkbZLeXBa_YGEveg7ZZqIp_TLTVfbfm6V69jQwvM_LzEPIDWdLzri8a5Y4xT1aD0vBhEhLIbg8IQuuVZXleVmekkUKqqxQOTsnF4gNY6zUQi_IdkUjfAX4prZ31CICYgf9RAdPQzcOcbJ9DRRtN7ahf6cdTB-DQ-qHmMA22F1ow3RItG0PGPCKnHnbIlz_zkvy9vjwun7ONtunl_Vqk9V5waasKmzhSlmC10w44FIoBrViu1pU1mqe51JpkNqBUJJX3qXPlNeaKV14Dzy_JLdz7xiHzz3gZJphH9MRaITUSudCFGVKyTlVxwExgjdjDJ2NB8OZOcozjfmTZ47yzCwvgfczCOmHpCcarAMkEy5EqCfjhvBfxQ9IIHvR</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Tabandeh, Armin</creator><creator>Jia, Gaofeng</creator><creator>Gardoni, Paolo</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T2</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3662-6569</orcidid><orcidid>https://orcid.org/0000-0001-9419-8481</orcidid></search><sort><creationdate>20220701</creationdate><title>A review and assessment of importance sampling methods for reliability analysis</title><author>Tabandeh, Armin ; Jia, Gaofeng ; Gardoni, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-94a4d565ef802de16270ec70bc29aa8133678e68de27619fd2027f880784ffe13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Calculus of variations</topic><topic>Computer applications</topic><topic>Failure analysis</topic><topic>Gaussian mixture</topic><topic>Importance sampling</topic><topic>Kernel density estimation</topic><topic>Limit states</topic><topic>Mathematical analysis</topic><topic>Numerical methods</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Probability density functions</topic><topic>Reliability analysis</topic><topic>Sampling</topic><topic>Sampling methods</topic><topic>Sampling techniques</topic><topic>Statistical analysis</topic><topic>Stochastic processes</topic><topic>Surrogate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tabandeh, Armin</creatorcontrib><creatorcontrib>Jia, Gaofeng</creatorcontrib><creatorcontrib>Gardoni, Paolo</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Structural safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tabandeh, Armin</au><au>Jia, Gaofeng</au><au>Gardoni, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A review and assessment of importance sampling methods for reliability analysis</atitle><jtitle>Structural safety</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>97</volume><spage>102216</spage><pages>102216-</pages><artnum>102216</artnum><issn>0167-4730</issn><eissn>1879-3355</eissn><abstract>This paper reviews the mathematical foundation of the importance sampling technique and discusses two general classes of methods to construct the importance sampling density (or probability measure) for reliability analysis. The paper first explains the failure probability estimator of the importance sampling technique, its statistical properties, and computational complexity. The optimal but not implementable importance sampling density, derived from the variational calculus, is the starting point of the two general classes of importance sampling methods. For time-variant reliability analysis, the optimal but not implementable stochastic control is derived that induces the corresponding optimal importance sampling probability measure. In the first class, the optimal importance sampling density is directly approximated by a member of a family of parametric or nonparametric probability density functions. This approximation requires defining the family of approximating probability densities, a measure of distance between two probability densities, and an optimization algorithm. In the second class, the approximating importance sampling density has the general functional form of the optimal solution. The approximation amounts to replacing the limit-state function with a computationally convenient surrogate. The paper then explores the performances of the two classes of importance sampling methods through several benchmark numerical examples. The challenges and future directions of the importance sampling technique are also discussed. •The mathematical foundation of the importance sampling (IS) technique is explained.•Failure probability estimators, their statistical properties, and computational complexity are presented.•Two classes of IS methods, called density and limit-state approximation methods, are explained.•The performances of the IS methods are explored through benchmark numerical examples.•The challenges and future directions of the IS methods are discussed.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.strusafe.2022.102216</doi><orcidid>https://orcid.org/0000-0003-3662-6569</orcidid><orcidid>https://orcid.org/0000-0001-9419-8481</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-4730
ispartof Structural safety, 2022-07, Vol.97, p.102216, Article 102216
issn 0167-4730
1879-3355
language eng
recordid cdi_proquest_journals_2687832245
source Elsevier ScienceDirect Journals Complete
subjects Algorithms
Approximation
Calculus of variations
Computer applications
Failure analysis
Gaussian mixture
Importance sampling
Kernel density estimation
Limit states
Mathematical analysis
Numerical methods
Optimal control
Optimization
Probability density functions
Reliability analysis
Sampling
Sampling methods
Sampling techniques
Statistical analysis
Stochastic processes
Surrogate
title A review and assessment of importance sampling methods for reliability analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A43%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20review%20and%20assessment%20of%20importance%20sampling%20methods%20for%20reliability%20analysis&rft.jtitle=Structural%20safety&rft.au=Tabandeh,%20Armin&rft.date=2022-07-01&rft.volume=97&rft.spage=102216&rft.pages=102216-&rft.artnum=102216&rft.issn=0167-4730&rft.eissn=1879-3355&rft_id=info:doi/10.1016/j.strusafe.2022.102216&rft_dat=%3Cproquest_cross%3E2687832245%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2687832245&rft_id=info:pmid/&rft_els_id=S0167473022000297&rfr_iscdi=true