Optimal control and approximate controllability for fractional integrodifferential evolution equations with infinite delay of order r∈(1,2)

This article investigates the issue of optimal control and approximate controllability results for fractional integrodifferential evolution equations with infinite delay of r∈(1,2) in Banach space. In the beginning, we analyze approximate controllability results for fractional integrodifferential ev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimal control applications & methods 2022-07, Vol.43 (4), p.996-1019
Hauptverfasser: Mohan Raja, Marimuthu, Vijayakumar, Velusamy, Shukla, Anurag, Sooppy Nisar, Kottakkaran, Sakthivel, Natarajan, Kaliraj, Kalimuthu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1019
container_issue 4
container_start_page 996
container_title Optimal control applications & methods
container_volume 43
creator Mohan Raja, Marimuthu
Vijayakumar, Velusamy
Shukla, Anurag
Sooppy Nisar, Kottakkaran
Sakthivel, Natarajan
Kaliraj, Kalimuthu
description This article investigates the issue of optimal control and approximate controllability results for fractional integrodifferential evolution equations with infinite delay of r∈(1,2) in Banach space. In the beginning, we analyze approximate controllability results for fractional integrodifferential evolution equations using the fractional calculations, cosine families, and Banach fixed point theorem. After, we developed the continuous dependence of the fractional integrodifferential evolution equations by using the Henry–Gronwall inequality. Furthermore, we tested the existence of optimal controls for the Lagrange problem. Lastly, an application is presented to illustrate the theory of the main results.
doi_str_mv 10.1002/oca.2867
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2687616902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2687616902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2937-16c2f822b8c66d5202532493f319965a15520861c54d45c89055e9e3e2c162583</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKvgIwTcVHBqfiaZybIU_6DQja5Dmkk0ZZxMM6k6b9CNL-mTmLG6dHUv5373wDkAnGM0xQiRa6_VlJS8OAAjjITIMMP5IRghnNOMoLI4Biddt0YIFZiSEfhcttG9qhpq38Tga6iaCqq2Df4jydH86bVaudrFHlofoA1KR-eb9OaaaJ6Dr5y1JpgmuqSZN19vhzs0m60alg6-u_iSYOsal0wrU6seegt9qEyA4Wu3m-ArcnkKjqyqO3P2O8fg6fbmcX6fLZZ3D_PZItNE0CLDXBNbErIqNecVI4gwSnJBLcVCcKYwS1rJsWZ5lTNdCsSYEYYaojEnrKRjcLH3TTk3W9NFufbbkPJ0kvCy4JgLRBI12VM6-K4Lxso2pFJCLzGSQ9kylS2HshOa7dF3V5v-X04u57Mf_hv-AIIi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2687616902</pqid></control><display><type>article</type><title>Optimal control and approximate controllability for fractional integrodifferential evolution equations with infinite delay of order r∈(1,2)</title><source>Access via Wiley Online Library</source><creator>Mohan Raja, Marimuthu ; Vijayakumar, Velusamy ; Shukla, Anurag ; Sooppy Nisar, Kottakkaran ; Sakthivel, Natarajan ; Kaliraj, Kalimuthu</creator><creatorcontrib>Mohan Raja, Marimuthu ; Vijayakumar, Velusamy ; Shukla, Anurag ; Sooppy Nisar, Kottakkaran ; Sakthivel, Natarajan ; Kaliraj, Kalimuthu</creatorcontrib><description>This article investigates the issue of optimal control and approximate controllability results for fractional integrodifferential evolution equations with infinite delay of r∈(1,2) in Banach space. In the beginning, we analyze approximate controllability results for fractional integrodifferential evolution equations using the fractional calculations, cosine families, and Banach fixed point theorem. After, we developed the continuous dependence of the fractional integrodifferential evolution equations by using the Henry–Gronwall inequality. Furthermore, we tested the existence of optimal controls for the Lagrange problem. Lastly, an application is presented to illustrate the theory of the main results.</description><identifier>ISSN: 0143-2087</identifier><identifier>EISSN: 1099-1514</identifier><identifier>DOI: 10.1002/oca.2867</identifier><language>eng</language><publisher>Glasgow: Wiley Subscription Services, Inc</publisher><subject>approximate controllability ; Banach spaces ; Controllability ; cosine families ; Evolution ; fixed point theorem ; Fixed points (mathematics) ; fractional derivative ; integrodifferential equations ; Mainardi's Wright‐type function ; Mathematical analysis ; mild solutions ; Optimal control ; optimal controls</subject><ispartof>Optimal control applications &amp; methods, 2022-07, Vol.43 (4), p.996-1019</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2937-16c2f822b8c66d5202532493f319965a15520861c54d45c89055e9e3e2c162583</citedby><cites>FETCH-LOGICAL-c2937-16c2f822b8c66d5202532493f319965a15520861c54d45c89055e9e3e2c162583</cites><orcidid>0000-0003-0902-3842 ; 0000-0001-5892-0342 ; 0000-0002-1177-2482 ; 0000-0001-5769-4320 ; 0000-0001-5976-5794 ; 0000-0002-6716-5390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Foca.2867$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Foca.2867$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Mohan Raja, Marimuthu</creatorcontrib><creatorcontrib>Vijayakumar, Velusamy</creatorcontrib><creatorcontrib>Shukla, Anurag</creatorcontrib><creatorcontrib>Sooppy Nisar, Kottakkaran</creatorcontrib><creatorcontrib>Sakthivel, Natarajan</creatorcontrib><creatorcontrib>Kaliraj, Kalimuthu</creatorcontrib><title>Optimal control and approximate controllability for fractional integrodifferential evolution equations with infinite delay of order r∈(1,2)</title><title>Optimal control applications &amp; methods</title><description>This article investigates the issue of optimal control and approximate controllability results for fractional integrodifferential evolution equations with infinite delay of r∈(1,2) in Banach space. In the beginning, we analyze approximate controllability results for fractional integrodifferential evolution equations using the fractional calculations, cosine families, and Banach fixed point theorem. After, we developed the continuous dependence of the fractional integrodifferential evolution equations by using the Henry–Gronwall inequality. Furthermore, we tested the existence of optimal controls for the Lagrange problem. Lastly, an application is presented to illustrate the theory of the main results.</description><subject>approximate controllability</subject><subject>Banach spaces</subject><subject>Controllability</subject><subject>cosine families</subject><subject>Evolution</subject><subject>fixed point theorem</subject><subject>Fixed points (mathematics)</subject><subject>fractional derivative</subject><subject>integrodifferential equations</subject><subject>Mainardi's Wright‐type function</subject><subject>Mathematical analysis</subject><subject>mild solutions</subject><subject>Optimal control</subject><subject>optimal controls</subject><issn>0143-2087</issn><issn>1099-1514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKvgIwTcVHBqfiaZybIU_6DQja5Dmkk0ZZxMM6k6b9CNL-mTmLG6dHUv5373wDkAnGM0xQiRa6_VlJS8OAAjjITIMMP5IRghnNOMoLI4Biddt0YIFZiSEfhcttG9qhpq38Tga6iaCqq2Df4jydH86bVaudrFHlofoA1KR-eb9OaaaJ6Dr5y1JpgmuqSZN19vhzs0m60alg6-u_iSYOsal0wrU6seegt9qEyA4Wu3m-ArcnkKjqyqO3P2O8fg6fbmcX6fLZZ3D_PZItNE0CLDXBNbErIqNecVI4gwSnJBLcVCcKYwS1rJsWZ5lTNdCsSYEYYaojEnrKRjcLH3TTk3W9NFufbbkPJ0kvCy4JgLRBI12VM6-K4Lxso2pFJCLzGSQ9kylS2HshOa7dF3V5v-X04u57Mf_hv-AIIi</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Mohan Raja, Marimuthu</creator><creator>Vijayakumar, Velusamy</creator><creator>Shukla, Anurag</creator><creator>Sooppy Nisar, Kottakkaran</creator><creator>Sakthivel, Natarajan</creator><creator>Kaliraj, Kalimuthu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0902-3842</orcidid><orcidid>https://orcid.org/0000-0001-5892-0342</orcidid><orcidid>https://orcid.org/0000-0002-1177-2482</orcidid><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid><orcidid>https://orcid.org/0000-0001-5976-5794</orcidid><orcidid>https://orcid.org/0000-0002-6716-5390</orcidid></search><sort><creationdate>202207</creationdate><title>Optimal control and approximate controllability for fractional integrodifferential evolution equations with infinite delay of order r∈(1,2)</title><author>Mohan Raja, Marimuthu ; Vijayakumar, Velusamy ; Shukla, Anurag ; Sooppy Nisar, Kottakkaran ; Sakthivel, Natarajan ; Kaliraj, Kalimuthu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2937-16c2f822b8c66d5202532493f319965a15520861c54d45c89055e9e3e2c162583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>approximate controllability</topic><topic>Banach spaces</topic><topic>Controllability</topic><topic>cosine families</topic><topic>Evolution</topic><topic>fixed point theorem</topic><topic>Fixed points (mathematics)</topic><topic>fractional derivative</topic><topic>integrodifferential equations</topic><topic>Mainardi's Wright‐type function</topic><topic>Mathematical analysis</topic><topic>mild solutions</topic><topic>Optimal control</topic><topic>optimal controls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohan Raja, Marimuthu</creatorcontrib><creatorcontrib>Vijayakumar, Velusamy</creatorcontrib><creatorcontrib>Shukla, Anurag</creatorcontrib><creatorcontrib>Sooppy Nisar, Kottakkaran</creatorcontrib><creatorcontrib>Sakthivel, Natarajan</creatorcontrib><creatorcontrib>Kaliraj, Kalimuthu</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optimal control applications &amp; methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohan Raja, Marimuthu</au><au>Vijayakumar, Velusamy</au><au>Shukla, Anurag</au><au>Sooppy Nisar, Kottakkaran</au><au>Sakthivel, Natarajan</au><au>Kaliraj, Kalimuthu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal control and approximate controllability for fractional integrodifferential evolution equations with infinite delay of order r∈(1,2)</atitle><jtitle>Optimal control applications &amp; methods</jtitle><date>2022-07</date><risdate>2022</risdate><volume>43</volume><issue>4</issue><spage>996</spage><epage>1019</epage><pages>996-1019</pages><issn>0143-2087</issn><eissn>1099-1514</eissn><abstract>This article investigates the issue of optimal control and approximate controllability results for fractional integrodifferential evolution equations with infinite delay of r∈(1,2) in Banach space. In the beginning, we analyze approximate controllability results for fractional integrodifferential evolution equations using the fractional calculations, cosine families, and Banach fixed point theorem. After, we developed the continuous dependence of the fractional integrodifferential evolution equations by using the Henry–Gronwall inequality. Furthermore, we tested the existence of optimal controls for the Lagrange problem. Lastly, an application is presented to illustrate the theory of the main results.</abstract><cop>Glasgow</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/oca.2867</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-0902-3842</orcidid><orcidid>https://orcid.org/0000-0001-5892-0342</orcidid><orcidid>https://orcid.org/0000-0002-1177-2482</orcidid><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid><orcidid>https://orcid.org/0000-0001-5976-5794</orcidid><orcidid>https://orcid.org/0000-0002-6716-5390</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0143-2087
ispartof Optimal control applications & methods, 2022-07, Vol.43 (4), p.996-1019
issn 0143-2087
1099-1514
language eng
recordid cdi_proquest_journals_2687616902
source Access via Wiley Online Library
subjects approximate controllability
Banach spaces
Controllability
cosine families
Evolution
fixed point theorem
Fixed points (mathematics)
fractional derivative
integrodifferential equations
Mainardi's Wright‐type function
Mathematical analysis
mild solutions
Optimal control
optimal controls
title Optimal control and approximate controllability for fractional integrodifferential evolution equations with infinite delay of order r∈(1,2)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A18%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20control%20and%20approximate%20controllability%20for%20fractional%20integrodifferential%20evolution%20equations%20with%20infinite%20delay%20of%20order%20r%E2%88%88(1,2)&rft.jtitle=Optimal%20control%20applications%20&%20methods&rft.au=Mohan%20Raja,%20Marimuthu&rft.date=2022-07&rft.volume=43&rft.issue=4&rft.spage=996&rft.epage=1019&rft.pages=996-1019&rft.issn=0143-2087&rft.eissn=1099-1514&rft_id=info:doi/10.1002/oca.2867&rft_dat=%3Cproquest_cross%3E2687616902%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2687616902&rft_id=info:pmid/&rfr_iscdi=true