Optimal control and approximate controllability for fractional integrodifferential evolution equations with infinite delay of order r∈(1,2)
This article investigates the issue of optimal control and approximate controllability results for fractional integrodifferential evolution equations with infinite delay of r∈(1,2) in Banach space. In the beginning, we analyze approximate controllability results for fractional integrodifferential ev...
Gespeichert in:
Veröffentlicht in: | Optimal control applications & methods 2022-07, Vol.43 (4), p.996-1019 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1019 |
---|---|
container_issue | 4 |
container_start_page | 996 |
container_title | Optimal control applications & methods |
container_volume | 43 |
creator | Mohan Raja, Marimuthu Vijayakumar, Velusamy Shukla, Anurag Sooppy Nisar, Kottakkaran Sakthivel, Natarajan Kaliraj, Kalimuthu |
description | This article investigates the issue of optimal control and approximate controllability results for fractional integrodifferential evolution equations with infinite delay of r∈(1,2) in Banach space. In the beginning, we analyze approximate controllability results for fractional integrodifferential evolution equations using the fractional calculations, cosine families, and Banach fixed point theorem. After, we developed the continuous dependence of the fractional integrodifferential evolution equations by using the Henry–Gronwall inequality. Furthermore, we tested the existence of optimal controls for the Lagrange problem. Lastly, an application is presented to illustrate the theory of the main results. |
doi_str_mv | 10.1002/oca.2867 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2687616902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2687616902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2937-16c2f822b8c66d5202532493f319965a15520861c54d45c89055e9e3e2c162583</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKvgIwTcVHBqfiaZybIU_6DQja5Dmkk0ZZxMM6k6b9CNL-mTmLG6dHUv5373wDkAnGM0xQiRa6_VlJS8OAAjjITIMMP5IRghnNOMoLI4Biddt0YIFZiSEfhcttG9qhpq38Tga6iaCqq2Df4jydH86bVaudrFHlofoA1KR-eb9OaaaJ6Dr5y1JpgmuqSZN19vhzs0m60alg6-u_iSYOsal0wrU6seegt9qEyA4Wu3m-ArcnkKjqyqO3P2O8fg6fbmcX6fLZZ3D_PZItNE0CLDXBNbErIqNecVI4gwSnJBLcVCcKYwS1rJsWZ5lTNdCsSYEYYaojEnrKRjcLH3TTk3W9NFufbbkPJ0kvCy4JgLRBI12VM6-K4Lxso2pFJCLzGSQ9kylS2HshOa7dF3V5v-X04u57Mf_hv-AIIi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2687616902</pqid></control><display><type>article</type><title>Optimal control and approximate controllability for fractional integrodifferential evolution equations with infinite delay of order r∈(1,2)</title><source>Access via Wiley Online Library</source><creator>Mohan Raja, Marimuthu ; Vijayakumar, Velusamy ; Shukla, Anurag ; Sooppy Nisar, Kottakkaran ; Sakthivel, Natarajan ; Kaliraj, Kalimuthu</creator><creatorcontrib>Mohan Raja, Marimuthu ; Vijayakumar, Velusamy ; Shukla, Anurag ; Sooppy Nisar, Kottakkaran ; Sakthivel, Natarajan ; Kaliraj, Kalimuthu</creatorcontrib><description>This article investigates the issue of optimal control and approximate controllability results for fractional integrodifferential evolution equations with infinite delay of r∈(1,2) in Banach space. In the beginning, we analyze approximate controllability results for fractional integrodifferential evolution equations using the fractional calculations, cosine families, and Banach fixed point theorem. After, we developed the continuous dependence of the fractional integrodifferential evolution equations by using the Henry–Gronwall inequality. Furthermore, we tested the existence of optimal controls for the Lagrange problem. Lastly, an application is presented to illustrate the theory of the main results.</description><identifier>ISSN: 0143-2087</identifier><identifier>EISSN: 1099-1514</identifier><identifier>DOI: 10.1002/oca.2867</identifier><language>eng</language><publisher>Glasgow: Wiley Subscription Services, Inc</publisher><subject>approximate controllability ; Banach spaces ; Controllability ; cosine families ; Evolution ; fixed point theorem ; Fixed points (mathematics) ; fractional derivative ; integrodifferential equations ; Mainardi's Wright‐type function ; Mathematical analysis ; mild solutions ; Optimal control ; optimal controls</subject><ispartof>Optimal control applications & methods, 2022-07, Vol.43 (4), p.996-1019</ispartof><rights>2022 John Wiley & Sons Ltd.</rights><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2937-16c2f822b8c66d5202532493f319965a15520861c54d45c89055e9e3e2c162583</citedby><cites>FETCH-LOGICAL-c2937-16c2f822b8c66d5202532493f319965a15520861c54d45c89055e9e3e2c162583</cites><orcidid>0000-0003-0902-3842 ; 0000-0001-5892-0342 ; 0000-0002-1177-2482 ; 0000-0001-5769-4320 ; 0000-0001-5976-5794 ; 0000-0002-6716-5390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Foca.2867$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Foca.2867$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Mohan Raja, Marimuthu</creatorcontrib><creatorcontrib>Vijayakumar, Velusamy</creatorcontrib><creatorcontrib>Shukla, Anurag</creatorcontrib><creatorcontrib>Sooppy Nisar, Kottakkaran</creatorcontrib><creatorcontrib>Sakthivel, Natarajan</creatorcontrib><creatorcontrib>Kaliraj, Kalimuthu</creatorcontrib><title>Optimal control and approximate controllability for fractional integrodifferential evolution equations with infinite delay of order r∈(1,2)</title><title>Optimal control applications & methods</title><description>This article investigates the issue of optimal control and approximate controllability results for fractional integrodifferential evolution equations with infinite delay of r∈(1,2) in Banach space. In the beginning, we analyze approximate controllability results for fractional integrodifferential evolution equations using the fractional calculations, cosine families, and Banach fixed point theorem. After, we developed the continuous dependence of the fractional integrodifferential evolution equations by using the Henry–Gronwall inequality. Furthermore, we tested the existence of optimal controls for the Lagrange problem. Lastly, an application is presented to illustrate the theory of the main results.</description><subject>approximate controllability</subject><subject>Banach spaces</subject><subject>Controllability</subject><subject>cosine families</subject><subject>Evolution</subject><subject>fixed point theorem</subject><subject>Fixed points (mathematics)</subject><subject>fractional derivative</subject><subject>integrodifferential equations</subject><subject>Mainardi's Wright‐type function</subject><subject>Mathematical analysis</subject><subject>mild solutions</subject><subject>Optimal control</subject><subject>optimal controls</subject><issn>0143-2087</issn><issn>1099-1514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKvgIwTcVHBqfiaZybIU_6DQja5Dmkk0ZZxMM6k6b9CNL-mTmLG6dHUv5373wDkAnGM0xQiRa6_VlJS8OAAjjITIMMP5IRghnNOMoLI4Biddt0YIFZiSEfhcttG9qhpq38Tga6iaCqq2Df4jydH86bVaudrFHlofoA1KR-eb9OaaaJ6Dr5y1JpgmuqSZN19vhzs0m60alg6-u_iSYOsal0wrU6seegt9qEyA4Wu3m-ArcnkKjqyqO3P2O8fg6fbmcX6fLZZ3D_PZItNE0CLDXBNbErIqNecVI4gwSnJBLcVCcKYwS1rJsWZ5lTNdCsSYEYYaojEnrKRjcLH3TTk3W9NFufbbkPJ0kvCy4JgLRBI12VM6-K4Lxso2pFJCLzGSQ9kylS2HshOa7dF3V5v-X04u57Mf_hv-AIIi</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Mohan Raja, Marimuthu</creator><creator>Vijayakumar, Velusamy</creator><creator>Shukla, Anurag</creator><creator>Sooppy Nisar, Kottakkaran</creator><creator>Sakthivel, Natarajan</creator><creator>Kaliraj, Kalimuthu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0902-3842</orcidid><orcidid>https://orcid.org/0000-0001-5892-0342</orcidid><orcidid>https://orcid.org/0000-0002-1177-2482</orcidid><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid><orcidid>https://orcid.org/0000-0001-5976-5794</orcidid><orcidid>https://orcid.org/0000-0002-6716-5390</orcidid></search><sort><creationdate>202207</creationdate><title>Optimal control and approximate controllability for fractional integrodifferential evolution equations with infinite delay of order r∈(1,2)</title><author>Mohan Raja, Marimuthu ; Vijayakumar, Velusamy ; Shukla, Anurag ; Sooppy Nisar, Kottakkaran ; Sakthivel, Natarajan ; Kaliraj, Kalimuthu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2937-16c2f822b8c66d5202532493f319965a15520861c54d45c89055e9e3e2c162583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>approximate controllability</topic><topic>Banach spaces</topic><topic>Controllability</topic><topic>cosine families</topic><topic>Evolution</topic><topic>fixed point theorem</topic><topic>Fixed points (mathematics)</topic><topic>fractional derivative</topic><topic>integrodifferential equations</topic><topic>Mainardi's Wright‐type function</topic><topic>Mathematical analysis</topic><topic>mild solutions</topic><topic>Optimal control</topic><topic>optimal controls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohan Raja, Marimuthu</creatorcontrib><creatorcontrib>Vijayakumar, Velusamy</creatorcontrib><creatorcontrib>Shukla, Anurag</creatorcontrib><creatorcontrib>Sooppy Nisar, Kottakkaran</creatorcontrib><creatorcontrib>Sakthivel, Natarajan</creatorcontrib><creatorcontrib>Kaliraj, Kalimuthu</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optimal control applications & methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohan Raja, Marimuthu</au><au>Vijayakumar, Velusamy</au><au>Shukla, Anurag</au><au>Sooppy Nisar, Kottakkaran</au><au>Sakthivel, Natarajan</au><au>Kaliraj, Kalimuthu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal control and approximate controllability for fractional integrodifferential evolution equations with infinite delay of order r∈(1,2)</atitle><jtitle>Optimal control applications & methods</jtitle><date>2022-07</date><risdate>2022</risdate><volume>43</volume><issue>4</issue><spage>996</spage><epage>1019</epage><pages>996-1019</pages><issn>0143-2087</issn><eissn>1099-1514</eissn><abstract>This article investigates the issue of optimal control and approximate controllability results for fractional integrodifferential evolution equations with infinite delay of r∈(1,2) in Banach space. In the beginning, we analyze approximate controllability results for fractional integrodifferential evolution equations using the fractional calculations, cosine families, and Banach fixed point theorem. After, we developed the continuous dependence of the fractional integrodifferential evolution equations by using the Henry–Gronwall inequality. Furthermore, we tested the existence of optimal controls for the Lagrange problem. Lastly, an application is presented to illustrate the theory of the main results.</abstract><cop>Glasgow</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/oca.2867</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-0902-3842</orcidid><orcidid>https://orcid.org/0000-0001-5892-0342</orcidid><orcidid>https://orcid.org/0000-0002-1177-2482</orcidid><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid><orcidid>https://orcid.org/0000-0001-5976-5794</orcidid><orcidid>https://orcid.org/0000-0002-6716-5390</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-2087 |
ispartof | Optimal control applications & methods, 2022-07, Vol.43 (4), p.996-1019 |
issn | 0143-2087 1099-1514 |
language | eng |
recordid | cdi_proquest_journals_2687616902 |
source | Access via Wiley Online Library |
subjects | approximate controllability Banach spaces Controllability cosine families Evolution fixed point theorem Fixed points (mathematics) fractional derivative integrodifferential equations Mainardi's Wright‐type function Mathematical analysis mild solutions Optimal control optimal controls |
title | Optimal control and approximate controllability for fractional integrodifferential evolution equations with infinite delay of order r∈(1,2) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A18%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20control%20and%20approximate%20controllability%20for%20fractional%20integrodifferential%20evolution%20equations%20with%20infinite%20delay%20of%20order%20r%E2%88%88(1,2)&rft.jtitle=Optimal%20control%20applications%20&%20methods&rft.au=Mohan%20Raja,%20Marimuthu&rft.date=2022-07&rft.volume=43&rft.issue=4&rft.spage=996&rft.epage=1019&rft.pages=996-1019&rft.issn=0143-2087&rft.eissn=1099-1514&rft_id=info:doi/10.1002/oca.2867&rft_dat=%3Cproquest_cross%3E2687616902%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2687616902&rft_id=info:pmid/&rfr_iscdi=true |