Marine Drifting Trajectory Prediction Based on LSTM-DNN Algorithm

In this paper, the long short-term memory with dense neural network (LSTM-DNN) is first introduced to calculate marine drifting trajectory. Based on the Internet of Things technology and the LSTM-DNN algorithm, the marine drifting trajectory model is established. In this model, the information such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless communications and mobile computing 2022-07, Vol.2022, p.1-13
Hauptverfasser: Li, Xianbin, Wang, Kai, Tang, Min, Qin, Jiangyi, Wu, Peng, Yang, Tingting, Zhang, Haichao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 1
container_title Wireless communications and mobile computing
container_volume 2022
creator Li, Xianbin
Wang, Kai
Tang, Min
Qin, Jiangyi
Wu, Peng
Yang, Tingting
Zhang, Haichao
description In this paper, the long short-term memory with dense neural network (LSTM-DNN) is first introduced to calculate marine drifting trajectory. Based on the Internet of Things technology and the LSTM-DNN algorithm, the marine drifting trajectory model is established. In this model, the information such as wind field, temperature field, ocean current motion field, and target attributes are included, and the influences of the above information on the trajectory model are studied in detail. In order to verify the proposed model, the marine experiments are carried out in the end. The results show that the predicted trajectory data matches well with the experimental trajectory data. By introducing DNN into the algorithm, computational accuracy of drifting trajectory can be significantly improved compared with the conventional LSTM-based prediction model. A detailed comparison of the two algorithms has also been given in the paper. The proposed remote sensing of marine drifting trajectory model can provide a high accurate trajectory prediction and will lead an important guidance in the marine search and rescue work.
doi_str_mv 10.1155/2022/7099494
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2687530345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2687530345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-f7a25c429bb07c41df4cae3a9e1c7486f695698484028d99505f114ce2d39cc93</originalsourceid><addsrcrecordid>eNp9kM9PwjAYhhujiYje_AOWeNRJ27XrvuMEfyUDTZznpnQtdIEN2xHCf-8IxKOn9z08-b68D0K3BD8SwvmIYkpHAgMwYGdoQHiC4ywV4vyvp3CJrkKoMcYJpmSA8qnyrjHRxDvbuWYRlV7VRnet30ef3lROd65toicVTBX1pfgqp_FkNovy1aL1rluur9GFVatgbk45RN8vz-X4LS4-Xt_HeRFrCqyLrVCUa0ZhPsdCM1JZppVJFBiiBctSmwJPIWMZwzSrADjmlhCmDa0S0BqSIbo73t349mdrQifrduub_qWkaSb6fQnjPfVwpLRvQ_DGyo13a-X3kmB5kCQPkuRJUo_fH_Glayq1c__Tv1B9ZCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2687530345</pqid></control><display><type>article</type><title>Marine Drifting Trajectory Prediction Based on LSTM-DNN Algorithm</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Li, Xianbin ; Wang, Kai ; Tang, Min ; Qin, Jiangyi ; Wu, Peng ; Yang, Tingting ; Zhang, Haichao</creator><contributor>Alamoodi, A.H.</contributor><creatorcontrib>Li, Xianbin ; Wang, Kai ; Tang, Min ; Qin, Jiangyi ; Wu, Peng ; Yang, Tingting ; Zhang, Haichao ; Alamoodi, A.H.</creatorcontrib><description>In this paper, the long short-term memory with dense neural network (LSTM-DNN) is first introduced to calculate marine drifting trajectory. Based on the Internet of Things technology and the LSTM-DNN algorithm, the marine drifting trajectory model is established. In this model, the information such as wind field, temperature field, ocean current motion field, and target attributes are included, and the influences of the above information on the trajectory model are studied in detail. In order to verify the proposed model, the marine experiments are carried out in the end. The results show that the predicted trajectory data matches well with the experimental trajectory data. By introducing DNN into the algorithm, computational accuracy of drifting trajectory can be significantly improved compared with the conventional LSTM-based prediction model. A detailed comparison of the two algorithms has also been given in the paper. The proposed remote sensing of marine drifting trajectory model can provide a high accurate trajectory prediction and will lead an important guidance in the marine search and rescue work.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2022/7099494</identifier><language>eng</language><publisher>Oxford: Hindawi</publisher><subject>Accuracy ; Algorithms ; Computer simulation ; Drift ; Evacuations &amp; rescues ; Internet of Things ; Marine technology ; Neural networks ; Ocean currents ; Prediction models ; Remote sensing ; Satellite communications ; Temperature distribution ; Time series ; Velocity</subject><ispartof>Wireless communications and mobile computing, 2022-07, Vol.2022, p.1-13</ispartof><rights>Copyright © 2022 Xianbin Li et al.</rights><rights>Copyright © 2022 Xianbin Li et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-f7a25c429bb07c41df4cae3a9e1c7486f695698484028d99505f114ce2d39cc93</cites><orcidid>0000-0003-4168-2901 ; 0000-0002-7454-0582</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Alamoodi, A.H.</contributor><creatorcontrib>Li, Xianbin</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Tang, Min</creatorcontrib><creatorcontrib>Qin, Jiangyi</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Yang, Tingting</creatorcontrib><creatorcontrib>Zhang, Haichao</creatorcontrib><title>Marine Drifting Trajectory Prediction Based on LSTM-DNN Algorithm</title><title>Wireless communications and mobile computing</title><description>In this paper, the long short-term memory with dense neural network (LSTM-DNN) is first introduced to calculate marine drifting trajectory. Based on the Internet of Things technology and the LSTM-DNN algorithm, the marine drifting trajectory model is established. In this model, the information such as wind field, temperature field, ocean current motion field, and target attributes are included, and the influences of the above information on the trajectory model are studied in detail. In order to verify the proposed model, the marine experiments are carried out in the end. The results show that the predicted trajectory data matches well with the experimental trajectory data. By introducing DNN into the algorithm, computational accuracy of drifting trajectory can be significantly improved compared with the conventional LSTM-based prediction model. A detailed comparison of the two algorithms has also been given in the paper. The proposed remote sensing of marine drifting trajectory model can provide a high accurate trajectory prediction and will lead an important guidance in the marine search and rescue work.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Drift</subject><subject>Evacuations &amp; rescues</subject><subject>Internet of Things</subject><subject>Marine technology</subject><subject>Neural networks</subject><subject>Ocean currents</subject><subject>Prediction models</subject><subject>Remote sensing</subject><subject>Satellite communications</subject><subject>Temperature distribution</subject><subject>Time series</subject><subject>Velocity</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kM9PwjAYhhujiYje_AOWeNRJ27XrvuMEfyUDTZznpnQtdIEN2xHCf-8IxKOn9z08-b68D0K3BD8SwvmIYkpHAgMwYGdoQHiC4ywV4vyvp3CJrkKoMcYJpmSA8qnyrjHRxDvbuWYRlV7VRnet30ef3lROd65toicVTBX1pfgqp_FkNovy1aL1rluur9GFVatgbk45RN8vz-X4LS4-Xt_HeRFrCqyLrVCUa0ZhPsdCM1JZppVJFBiiBctSmwJPIWMZwzSrADjmlhCmDa0S0BqSIbo73t349mdrQifrduub_qWkaSb6fQnjPfVwpLRvQ_DGyo13a-X3kmB5kCQPkuRJUo_fH_Glayq1c__Tv1B9ZCw</recordid><startdate>20220702</startdate><enddate>20220702</enddate><creator>Li, Xianbin</creator><creator>Wang, Kai</creator><creator>Tang, Min</creator><creator>Qin, Jiangyi</creator><creator>Wu, Peng</creator><creator>Yang, Tingting</creator><creator>Zhang, Haichao</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4168-2901</orcidid><orcidid>https://orcid.org/0000-0002-7454-0582</orcidid></search><sort><creationdate>20220702</creationdate><title>Marine Drifting Trajectory Prediction Based on LSTM-DNN Algorithm</title><author>Li, Xianbin ; Wang, Kai ; Tang, Min ; Qin, Jiangyi ; Wu, Peng ; Yang, Tingting ; Zhang, Haichao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-f7a25c429bb07c41df4cae3a9e1c7486f695698484028d99505f114ce2d39cc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Drift</topic><topic>Evacuations &amp; rescues</topic><topic>Internet of Things</topic><topic>Marine technology</topic><topic>Neural networks</topic><topic>Ocean currents</topic><topic>Prediction models</topic><topic>Remote sensing</topic><topic>Satellite communications</topic><topic>Temperature distribution</topic><topic>Time series</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xianbin</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Tang, Min</creatorcontrib><creatorcontrib>Qin, Jiangyi</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Yang, Tingting</creatorcontrib><creatorcontrib>Zhang, Haichao</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xianbin</au><au>Wang, Kai</au><au>Tang, Min</au><au>Qin, Jiangyi</au><au>Wu, Peng</au><au>Yang, Tingting</au><au>Zhang, Haichao</au><au>Alamoodi, A.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marine Drifting Trajectory Prediction Based on LSTM-DNN Algorithm</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2022-07-02</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>In this paper, the long short-term memory with dense neural network (LSTM-DNN) is first introduced to calculate marine drifting trajectory. Based on the Internet of Things technology and the LSTM-DNN algorithm, the marine drifting trajectory model is established. In this model, the information such as wind field, temperature field, ocean current motion field, and target attributes are included, and the influences of the above information on the trajectory model are studied in detail. In order to verify the proposed model, the marine experiments are carried out in the end. The results show that the predicted trajectory data matches well with the experimental trajectory data. By introducing DNN into the algorithm, computational accuracy of drifting trajectory can be significantly improved compared with the conventional LSTM-based prediction model. A detailed comparison of the two algorithms has also been given in the paper. The proposed remote sensing of marine drifting trajectory model can provide a high accurate trajectory prediction and will lead an important guidance in the marine search and rescue work.</abstract><cop>Oxford</cop><pub>Hindawi</pub><doi>10.1155/2022/7099494</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4168-2901</orcidid><orcidid>https://orcid.org/0000-0002-7454-0582</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-8669
ispartof Wireless communications and mobile computing, 2022-07, Vol.2022, p.1-13
issn 1530-8669
1530-8677
language eng
recordid cdi_proquest_journals_2687530345
source Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Accuracy
Algorithms
Computer simulation
Drift
Evacuations & rescues
Internet of Things
Marine technology
Neural networks
Ocean currents
Prediction models
Remote sensing
Satellite communications
Temperature distribution
Time series
Velocity
title Marine Drifting Trajectory Prediction Based on LSTM-DNN Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A45%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marine%20Drifting%20Trajectory%20Prediction%20Based%20on%20LSTM-DNN%20Algorithm&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Li,%20Xianbin&rft.date=2022-07-02&rft.volume=2022&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2022/7099494&rft_dat=%3Cproquest_cross%3E2687530345%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2687530345&rft_id=info:pmid/&rfr_iscdi=true