Marine Drifting Trajectory Prediction Based on LSTM-DNN Algorithm
In this paper, the long short-term memory with dense neural network (LSTM-DNN) is first introduced to calculate marine drifting trajectory. Based on the Internet of Things technology and the LSTM-DNN algorithm, the marine drifting trajectory model is established. In this model, the information such...
Gespeichert in:
Veröffentlicht in: | Wireless communications and mobile computing 2022-07, Vol.2022, p.1-13 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Wireless communications and mobile computing |
container_volume | 2022 |
creator | Li, Xianbin Wang, Kai Tang, Min Qin, Jiangyi Wu, Peng Yang, Tingting Zhang, Haichao |
description | In this paper, the long short-term memory with dense neural network (LSTM-DNN) is first introduced to calculate marine drifting trajectory. Based on the Internet of Things technology and the LSTM-DNN algorithm, the marine drifting trajectory model is established. In this model, the information such as wind field, temperature field, ocean current motion field, and target attributes are included, and the influences of the above information on the trajectory model are studied in detail. In order to verify the proposed model, the marine experiments are carried out in the end. The results show that the predicted trajectory data matches well with the experimental trajectory data. By introducing DNN into the algorithm, computational accuracy of drifting trajectory can be significantly improved compared with the conventional LSTM-based prediction model. A detailed comparison of the two algorithms has also been given in the paper. The proposed remote sensing of marine drifting trajectory model can provide a high accurate trajectory prediction and will lead an important guidance in the marine search and rescue work. |
doi_str_mv | 10.1155/2022/7099494 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2687530345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2687530345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-f7a25c429bb07c41df4cae3a9e1c7486f695698484028d99505f114ce2d39cc93</originalsourceid><addsrcrecordid>eNp9kM9PwjAYhhujiYje_AOWeNRJ27XrvuMEfyUDTZznpnQtdIEN2xHCf-8IxKOn9z08-b68D0K3BD8SwvmIYkpHAgMwYGdoQHiC4ywV4vyvp3CJrkKoMcYJpmSA8qnyrjHRxDvbuWYRlV7VRnet30ef3lROd65toicVTBX1pfgqp_FkNovy1aL1rluur9GFVatgbk45RN8vz-X4LS4-Xt_HeRFrCqyLrVCUa0ZhPsdCM1JZppVJFBiiBctSmwJPIWMZwzSrADjmlhCmDa0S0BqSIbo73t349mdrQifrduub_qWkaSb6fQnjPfVwpLRvQ_DGyo13a-X3kmB5kCQPkuRJUo_fH_Glayq1c__Tv1B9ZCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2687530345</pqid></control><display><type>article</type><title>Marine Drifting Trajectory Prediction Based on LSTM-DNN Algorithm</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Li, Xianbin ; Wang, Kai ; Tang, Min ; Qin, Jiangyi ; Wu, Peng ; Yang, Tingting ; Zhang, Haichao</creator><contributor>Alamoodi, A.H.</contributor><creatorcontrib>Li, Xianbin ; Wang, Kai ; Tang, Min ; Qin, Jiangyi ; Wu, Peng ; Yang, Tingting ; Zhang, Haichao ; Alamoodi, A.H.</creatorcontrib><description>In this paper, the long short-term memory with dense neural network (LSTM-DNN) is first introduced to calculate marine drifting trajectory. Based on the Internet of Things technology and the LSTM-DNN algorithm, the marine drifting trajectory model is established. In this model, the information such as wind field, temperature field, ocean current motion field, and target attributes are included, and the influences of the above information on the trajectory model are studied in detail. In order to verify the proposed model, the marine experiments are carried out in the end. The results show that the predicted trajectory data matches well with the experimental trajectory data. By introducing DNN into the algorithm, computational accuracy of drifting trajectory can be significantly improved compared with the conventional LSTM-based prediction model. A detailed comparison of the two algorithms has also been given in the paper. The proposed remote sensing of marine drifting trajectory model can provide a high accurate trajectory prediction and will lead an important guidance in the marine search and rescue work.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2022/7099494</identifier><language>eng</language><publisher>Oxford: Hindawi</publisher><subject>Accuracy ; Algorithms ; Computer simulation ; Drift ; Evacuations & rescues ; Internet of Things ; Marine technology ; Neural networks ; Ocean currents ; Prediction models ; Remote sensing ; Satellite communications ; Temperature distribution ; Time series ; Velocity</subject><ispartof>Wireless communications and mobile computing, 2022-07, Vol.2022, p.1-13</ispartof><rights>Copyright © 2022 Xianbin Li et al.</rights><rights>Copyright © 2022 Xianbin Li et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-f7a25c429bb07c41df4cae3a9e1c7486f695698484028d99505f114ce2d39cc93</cites><orcidid>0000-0003-4168-2901 ; 0000-0002-7454-0582</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Alamoodi, A.H.</contributor><creatorcontrib>Li, Xianbin</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Tang, Min</creatorcontrib><creatorcontrib>Qin, Jiangyi</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Yang, Tingting</creatorcontrib><creatorcontrib>Zhang, Haichao</creatorcontrib><title>Marine Drifting Trajectory Prediction Based on LSTM-DNN Algorithm</title><title>Wireless communications and mobile computing</title><description>In this paper, the long short-term memory with dense neural network (LSTM-DNN) is first introduced to calculate marine drifting trajectory. Based on the Internet of Things technology and the LSTM-DNN algorithm, the marine drifting trajectory model is established. In this model, the information such as wind field, temperature field, ocean current motion field, and target attributes are included, and the influences of the above information on the trajectory model are studied in detail. In order to verify the proposed model, the marine experiments are carried out in the end. The results show that the predicted trajectory data matches well with the experimental trajectory data. By introducing DNN into the algorithm, computational accuracy of drifting trajectory can be significantly improved compared with the conventional LSTM-based prediction model. A detailed comparison of the two algorithms has also been given in the paper. The proposed remote sensing of marine drifting trajectory model can provide a high accurate trajectory prediction and will lead an important guidance in the marine search and rescue work.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Drift</subject><subject>Evacuations & rescues</subject><subject>Internet of Things</subject><subject>Marine technology</subject><subject>Neural networks</subject><subject>Ocean currents</subject><subject>Prediction models</subject><subject>Remote sensing</subject><subject>Satellite communications</subject><subject>Temperature distribution</subject><subject>Time series</subject><subject>Velocity</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kM9PwjAYhhujiYje_AOWeNRJ27XrvuMEfyUDTZznpnQtdIEN2xHCf-8IxKOn9z08-b68D0K3BD8SwvmIYkpHAgMwYGdoQHiC4ywV4vyvp3CJrkKoMcYJpmSA8qnyrjHRxDvbuWYRlV7VRnet30ef3lROd65toicVTBX1pfgqp_FkNovy1aL1rluur9GFVatgbk45RN8vz-X4LS4-Xt_HeRFrCqyLrVCUa0ZhPsdCM1JZppVJFBiiBctSmwJPIWMZwzSrADjmlhCmDa0S0BqSIbo73t349mdrQifrduub_qWkaSb6fQnjPfVwpLRvQ_DGyo13a-X3kmB5kCQPkuRJUo_fH_Glayq1c__Tv1B9ZCw</recordid><startdate>20220702</startdate><enddate>20220702</enddate><creator>Li, Xianbin</creator><creator>Wang, Kai</creator><creator>Tang, Min</creator><creator>Qin, Jiangyi</creator><creator>Wu, Peng</creator><creator>Yang, Tingting</creator><creator>Zhang, Haichao</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4168-2901</orcidid><orcidid>https://orcid.org/0000-0002-7454-0582</orcidid></search><sort><creationdate>20220702</creationdate><title>Marine Drifting Trajectory Prediction Based on LSTM-DNN Algorithm</title><author>Li, Xianbin ; Wang, Kai ; Tang, Min ; Qin, Jiangyi ; Wu, Peng ; Yang, Tingting ; Zhang, Haichao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-f7a25c429bb07c41df4cae3a9e1c7486f695698484028d99505f114ce2d39cc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Drift</topic><topic>Evacuations & rescues</topic><topic>Internet of Things</topic><topic>Marine technology</topic><topic>Neural networks</topic><topic>Ocean currents</topic><topic>Prediction models</topic><topic>Remote sensing</topic><topic>Satellite communications</topic><topic>Temperature distribution</topic><topic>Time series</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xianbin</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Tang, Min</creatorcontrib><creatorcontrib>Qin, Jiangyi</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Yang, Tingting</creatorcontrib><creatorcontrib>Zhang, Haichao</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xianbin</au><au>Wang, Kai</au><au>Tang, Min</au><au>Qin, Jiangyi</au><au>Wu, Peng</au><au>Yang, Tingting</au><au>Zhang, Haichao</au><au>Alamoodi, A.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marine Drifting Trajectory Prediction Based on LSTM-DNN Algorithm</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2022-07-02</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>In this paper, the long short-term memory with dense neural network (LSTM-DNN) is first introduced to calculate marine drifting trajectory. Based on the Internet of Things technology and the LSTM-DNN algorithm, the marine drifting trajectory model is established. In this model, the information such as wind field, temperature field, ocean current motion field, and target attributes are included, and the influences of the above information on the trajectory model are studied in detail. In order to verify the proposed model, the marine experiments are carried out in the end. The results show that the predicted trajectory data matches well with the experimental trajectory data. By introducing DNN into the algorithm, computational accuracy of drifting trajectory can be significantly improved compared with the conventional LSTM-based prediction model. A detailed comparison of the two algorithms has also been given in the paper. The proposed remote sensing of marine drifting trajectory model can provide a high accurate trajectory prediction and will lead an important guidance in the marine search and rescue work.</abstract><cop>Oxford</cop><pub>Hindawi</pub><doi>10.1155/2022/7099494</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4168-2901</orcidid><orcidid>https://orcid.org/0000-0002-7454-0582</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-8669 |
ispartof | Wireless communications and mobile computing, 2022-07, Vol.2022, p.1-13 |
issn | 1530-8669 1530-8677 |
language | eng |
recordid | cdi_proquest_journals_2687530345 |
source | Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Accuracy Algorithms Computer simulation Drift Evacuations & rescues Internet of Things Marine technology Neural networks Ocean currents Prediction models Remote sensing Satellite communications Temperature distribution Time series Velocity |
title | Marine Drifting Trajectory Prediction Based on LSTM-DNN Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A45%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marine%20Drifting%20Trajectory%20Prediction%20Based%20on%20LSTM-DNN%20Algorithm&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Li,%20Xianbin&rft.date=2022-07-02&rft.volume=2022&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2022/7099494&rft_dat=%3Cproquest_cross%3E2687530345%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2687530345&rft_id=info:pmid/&rfr_iscdi=true |