The Maximum Principle for Optimal Control of BSDEs with Locally Lipschitz Coefficients

The present paper studies a stochastic control problem for a locally Lipschitz backward stochastic differential equation. Assuming that the control domain is not necessarily convex, we establish a necessary and sufficient condition for optimality satisfied by all optimal controls. These conditions a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamical and control systems 2022-07, Vol.28 (3), p.565-584
Hauptverfasser: Azizi, Hanine, Khelfallah, Nabil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 584
container_issue 3
container_start_page 565
container_title Journal of dynamical and control systems
container_volume 28
creator Azizi, Hanine
Khelfallah, Nabil
description The present paper studies a stochastic control problem for a locally Lipschitz backward stochastic differential equation. Assuming that the control domain is not necessarily convex, we establish a necessary and sufficient condition for optimality satisfied by all optimal controls. These conditions are described by a linear locally Lipschitz SDE and a maximum condition on the Hamiltonian. We first prove, under some convenient conditions, the existence of a unique solution to the resulting adjoint equation. Then, with the help of an approximation argument on the coefficients, we define a family of control problems with globally Lipschitz coefficients whereby we derive a stochastic maximum principle for near optimality to such approximated systems. Thereafter, we turn back to the original control problem by passing to the limits. As far as the authors are aware, this is the first version of the stochastic maximum principle covering the locally Lipschitz case.
doi_str_mv 10.1007/s10883-021-09558-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2687419041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2687419041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-991895bc0e1c4c6c2af9be47a6257f45f56300b9846a3e130679e8e231af9cec3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SS7G6So9ZPqFSweg3bkNiU7WZNttj6642u4M3TzOF532EehE4pnFMAcZEoSMkJMEpAlaUk2z00oqXgRFZK7ucdhCJMsOIQHaW0AgAluRyh1_nS4sd669ebNX6KvjW-ayx2IeJZ1_t13eBJaPsYGhwcvnq-vkn4w_dLPA2mbpodnvoumaXvPzNnnfPG27ZPx-jA1U2yJ79zjF5ub-aTezKd3T1MLqfEMAE9UYpKVS4MWGoKUxlWO7WwhagrVgpXlK6sOMBCyaKquaUcKqGstIzTDBpr-BidDb1dDO8bm3q9CpvY5pOaVVIUVEFBM8UGysSQUrROdzG_Fneagv72pwd_OvvTP_70Nof4EEoZbt9s_Kv-J_UF7g5zUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2687419041</pqid></control><display><type>article</type><title>The Maximum Principle for Optimal Control of BSDEs with Locally Lipschitz Coefficients</title><source>SpringerNature Journals</source><creator>Azizi, Hanine ; Khelfallah, Nabil</creator><creatorcontrib>Azizi, Hanine ; Khelfallah, Nabil</creatorcontrib><description>The present paper studies a stochastic control problem for a locally Lipschitz backward stochastic differential equation. Assuming that the control domain is not necessarily convex, we establish a necessary and sufficient condition for optimality satisfied by all optimal controls. These conditions are described by a linear locally Lipschitz SDE and a maximum condition on the Hamiltonian. We first prove, under some convenient conditions, the existence of a unique solution to the resulting adjoint equation. Then, with the help of an approximation argument on the coefficients, we define a family of control problems with globally Lipschitz coefficients whereby we derive a stochastic maximum principle for near optimality to such approximated systems. Thereafter, we turn back to the original control problem by passing to the limits. As far as the authors are aware, this is the first version of the stochastic maximum principle covering the locally Lipschitz case.</description><identifier>ISSN: 1079-2724</identifier><identifier>EISSN: 1573-8698</identifier><identifier>DOI: 10.1007/s10883-021-09558-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Approximation ; Calculus of Variations and Optimal Control; Optimization ; Coefficients ; Control ; Differential equations ; Dynamical Systems ; Dynamical Systems and Ergodic Theory ; Mathematics ; Mathematics and Statistics ; Maximum principle ; Optimal control ; Optimization ; Stochastic processes ; Systems Theory ; Vibration</subject><ispartof>Journal of dynamical and control systems, 2022-07, Vol.28 (3), p.565-584</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-991895bc0e1c4c6c2af9be47a6257f45f56300b9846a3e130679e8e231af9cec3</cites><orcidid>0000-0002-9269-9829</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10883-021-09558-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10883-021-09558-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Azizi, Hanine</creatorcontrib><creatorcontrib>Khelfallah, Nabil</creatorcontrib><title>The Maximum Principle for Optimal Control of BSDEs with Locally Lipschitz Coefficients</title><title>Journal of dynamical and control systems</title><addtitle>J Dyn Control Syst</addtitle><description>The present paper studies a stochastic control problem for a locally Lipschitz backward stochastic differential equation. Assuming that the control domain is not necessarily convex, we establish a necessary and sufficient condition for optimality satisfied by all optimal controls. These conditions are described by a linear locally Lipschitz SDE and a maximum condition on the Hamiltonian. We first prove, under some convenient conditions, the existence of a unique solution to the resulting adjoint equation. Then, with the help of an approximation argument on the coefficients, we define a family of control problems with globally Lipschitz coefficients whereby we derive a stochastic maximum principle for near optimality to such approximated systems. Thereafter, we turn back to the original control problem by passing to the limits. As far as the authors are aware, this is the first version of the stochastic maximum principle covering the locally Lipschitz case.</description><subject>Approximation</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Coefficients</subject><subject>Control</subject><subject>Differential equations</subject><subject>Dynamical Systems</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Maximum principle</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Stochastic processes</subject><subject>Systems Theory</subject><subject>Vibration</subject><issn>1079-2724</issn><issn>1573-8698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SS7G6So9ZPqFSweg3bkNiU7WZNttj6642u4M3TzOF532EehE4pnFMAcZEoSMkJMEpAlaUk2z00oqXgRFZK7ucdhCJMsOIQHaW0AgAluRyh1_nS4sd669ebNX6KvjW-ayx2IeJZ1_t13eBJaPsYGhwcvnq-vkn4w_dLPA2mbpodnvoumaXvPzNnnfPG27ZPx-jA1U2yJ79zjF5ub-aTezKd3T1MLqfEMAE9UYpKVS4MWGoKUxlWO7WwhagrVgpXlK6sOMBCyaKquaUcKqGstIzTDBpr-BidDb1dDO8bm3q9CpvY5pOaVVIUVEFBM8UGysSQUrROdzG_Fneagv72pwd_OvvTP_70Nof4EEoZbt9s_Kv-J_UF7g5zUw</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Azizi, Hanine</creator><creator>Khelfallah, Nabil</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9269-9829</orcidid></search><sort><creationdate>20220701</creationdate><title>The Maximum Principle for Optimal Control of BSDEs with Locally Lipschitz Coefficients</title><author>Azizi, Hanine ; Khelfallah, Nabil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-991895bc0e1c4c6c2af9be47a6257f45f56300b9846a3e130679e8e231af9cec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Coefficients</topic><topic>Control</topic><topic>Differential equations</topic><topic>Dynamical Systems</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Maximum principle</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Stochastic processes</topic><topic>Systems Theory</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azizi, Hanine</creatorcontrib><creatorcontrib>Khelfallah, Nabil</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of dynamical and control systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azizi, Hanine</au><au>Khelfallah, Nabil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Maximum Principle for Optimal Control of BSDEs with Locally Lipschitz Coefficients</atitle><jtitle>Journal of dynamical and control systems</jtitle><stitle>J Dyn Control Syst</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>28</volume><issue>3</issue><spage>565</spage><epage>584</epage><pages>565-584</pages><issn>1079-2724</issn><eissn>1573-8698</eissn><abstract>The present paper studies a stochastic control problem for a locally Lipschitz backward stochastic differential equation. Assuming that the control domain is not necessarily convex, we establish a necessary and sufficient condition for optimality satisfied by all optimal controls. These conditions are described by a linear locally Lipschitz SDE and a maximum condition on the Hamiltonian. We first prove, under some convenient conditions, the existence of a unique solution to the resulting adjoint equation. Then, with the help of an approximation argument on the coefficients, we define a family of control problems with globally Lipschitz coefficients whereby we derive a stochastic maximum principle for near optimality to such approximated systems. Thereafter, we turn back to the original control problem by passing to the limits. As far as the authors are aware, this is the first version of the stochastic maximum principle covering the locally Lipschitz case.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10883-021-09558-x</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-9269-9829</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1079-2724
ispartof Journal of dynamical and control systems, 2022-07, Vol.28 (3), p.565-584
issn 1079-2724
1573-8698
language eng
recordid cdi_proquest_journals_2687419041
source SpringerNature Journals
subjects Approximation
Calculus of Variations and Optimal Control
Optimization
Coefficients
Control
Differential equations
Dynamical Systems
Dynamical Systems and Ergodic Theory
Mathematics
Mathematics and Statistics
Maximum principle
Optimal control
Optimization
Stochastic processes
Systems Theory
Vibration
title The Maximum Principle for Optimal Control of BSDEs with Locally Lipschitz Coefficients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A31%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Maximum%20Principle%20for%20Optimal%20Control%20of%20BSDEs%20with%20Locally%20Lipschitz%20Coefficients&rft.jtitle=Journal%20of%20dynamical%20and%20control%20systems&rft.au=Azizi,%20Hanine&rft.date=2022-07-01&rft.volume=28&rft.issue=3&rft.spage=565&rft.epage=584&rft.pages=565-584&rft.issn=1079-2724&rft.eissn=1573-8698&rft_id=info:doi/10.1007/s10883-021-09558-x&rft_dat=%3Cproquest_cross%3E2687419041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2687419041&rft_id=info:pmid/&rfr_iscdi=true