The Maximum Principle for Optimal Control of BSDEs with Locally Lipschitz Coefficients
The present paper studies a stochastic control problem for a locally Lipschitz backward stochastic differential equation. Assuming that the control domain is not necessarily convex, we establish a necessary and sufficient condition for optimality satisfied by all optimal controls. These conditions a...
Gespeichert in:
Veröffentlicht in: | Journal of dynamical and control systems 2022-07, Vol.28 (3), p.565-584 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 584 |
---|---|
container_issue | 3 |
container_start_page | 565 |
container_title | Journal of dynamical and control systems |
container_volume | 28 |
creator | Azizi, Hanine Khelfallah, Nabil |
description | The present paper studies a stochastic control problem for a locally Lipschitz backward stochastic differential equation. Assuming that the control domain is not necessarily convex, we establish a necessary and sufficient condition for optimality satisfied by all optimal controls. These conditions are described by a linear locally Lipschitz SDE and a maximum condition on the Hamiltonian. We first prove, under some convenient conditions, the existence of a unique solution to the resulting adjoint equation. Then, with the help of an approximation argument on the coefficients, we define a family of control problems with globally Lipschitz coefficients whereby we derive a stochastic maximum principle for near optimality to such approximated systems. Thereafter, we turn back to the original control problem by passing to the limits. As far as the authors are aware, this is the first version of the stochastic maximum principle covering the locally Lipschitz case. |
doi_str_mv | 10.1007/s10883-021-09558-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2687419041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2687419041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-991895bc0e1c4c6c2af9be47a6257f45f56300b9846a3e130679e8e231af9cec3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SS7G6So9ZPqFSweg3bkNiU7WZNttj6642u4M3TzOF532EehE4pnFMAcZEoSMkJMEpAlaUk2z00oqXgRFZK7ucdhCJMsOIQHaW0AgAluRyh1_nS4sd669ebNX6KvjW-ayx2IeJZ1_t13eBJaPsYGhwcvnq-vkn4w_dLPA2mbpodnvoumaXvPzNnnfPG27ZPx-jA1U2yJ79zjF5ub-aTezKd3T1MLqfEMAE9UYpKVS4MWGoKUxlWO7WwhagrVgpXlK6sOMBCyaKquaUcKqGstIzTDBpr-BidDb1dDO8bm3q9CpvY5pOaVVIUVEFBM8UGysSQUrROdzG_Fneagv72pwd_OvvTP_70Nof4EEoZbt9s_Kv-J_UF7g5zUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2687419041</pqid></control><display><type>article</type><title>The Maximum Principle for Optimal Control of BSDEs with Locally Lipschitz Coefficients</title><source>SpringerNature Journals</source><creator>Azizi, Hanine ; Khelfallah, Nabil</creator><creatorcontrib>Azizi, Hanine ; Khelfallah, Nabil</creatorcontrib><description>The present paper studies a stochastic control problem for a locally Lipschitz backward stochastic differential equation. Assuming that the control domain is not necessarily convex, we establish a necessary and sufficient condition for optimality satisfied by all optimal controls. These conditions are described by a linear locally Lipschitz SDE and a maximum condition on the Hamiltonian. We first prove, under some convenient conditions, the existence of a unique solution to the resulting adjoint equation. Then, with the help of an approximation argument on the coefficients, we define a family of control problems with globally Lipschitz coefficients whereby we derive a stochastic maximum principle for near optimality to such approximated systems. Thereafter, we turn back to the original control problem by passing to the limits. As far as the authors are aware, this is the first version of the stochastic maximum principle covering the locally Lipschitz case.</description><identifier>ISSN: 1079-2724</identifier><identifier>EISSN: 1573-8698</identifier><identifier>DOI: 10.1007/s10883-021-09558-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Approximation ; Calculus of Variations and Optimal Control; Optimization ; Coefficients ; Control ; Differential equations ; Dynamical Systems ; Dynamical Systems and Ergodic Theory ; Mathematics ; Mathematics and Statistics ; Maximum principle ; Optimal control ; Optimization ; Stochastic processes ; Systems Theory ; Vibration</subject><ispartof>Journal of dynamical and control systems, 2022-07, Vol.28 (3), p.565-584</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-991895bc0e1c4c6c2af9be47a6257f45f56300b9846a3e130679e8e231af9cec3</cites><orcidid>0000-0002-9269-9829</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10883-021-09558-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10883-021-09558-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Azizi, Hanine</creatorcontrib><creatorcontrib>Khelfallah, Nabil</creatorcontrib><title>The Maximum Principle for Optimal Control of BSDEs with Locally Lipschitz Coefficients</title><title>Journal of dynamical and control systems</title><addtitle>J Dyn Control Syst</addtitle><description>The present paper studies a stochastic control problem for a locally Lipschitz backward stochastic differential equation. Assuming that the control domain is not necessarily convex, we establish a necessary and sufficient condition for optimality satisfied by all optimal controls. These conditions are described by a linear locally Lipschitz SDE and a maximum condition on the Hamiltonian. We first prove, under some convenient conditions, the existence of a unique solution to the resulting adjoint equation. Then, with the help of an approximation argument on the coefficients, we define a family of control problems with globally Lipschitz coefficients whereby we derive a stochastic maximum principle for near optimality to such approximated systems. Thereafter, we turn back to the original control problem by passing to the limits. As far as the authors are aware, this is the first version of the stochastic maximum principle covering the locally Lipschitz case.</description><subject>Approximation</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Coefficients</subject><subject>Control</subject><subject>Differential equations</subject><subject>Dynamical Systems</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Maximum principle</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Stochastic processes</subject><subject>Systems Theory</subject><subject>Vibration</subject><issn>1079-2724</issn><issn>1573-8698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SS7G6So9ZPqFSweg3bkNiU7WZNttj6642u4M3TzOF532EehE4pnFMAcZEoSMkJMEpAlaUk2z00oqXgRFZK7ucdhCJMsOIQHaW0AgAluRyh1_nS4sd669ebNX6KvjW-ayx2IeJZ1_t13eBJaPsYGhwcvnq-vkn4w_dLPA2mbpodnvoumaXvPzNnnfPG27ZPx-jA1U2yJ79zjF5ub-aTezKd3T1MLqfEMAE9UYpKVS4MWGoKUxlWO7WwhagrVgpXlK6sOMBCyaKquaUcKqGstIzTDBpr-BidDb1dDO8bm3q9CpvY5pOaVVIUVEFBM8UGysSQUrROdzG_Fneagv72pwd_OvvTP_70Nof4EEoZbt9s_Kv-J_UF7g5zUw</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Azizi, Hanine</creator><creator>Khelfallah, Nabil</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9269-9829</orcidid></search><sort><creationdate>20220701</creationdate><title>The Maximum Principle for Optimal Control of BSDEs with Locally Lipschitz Coefficients</title><author>Azizi, Hanine ; Khelfallah, Nabil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-991895bc0e1c4c6c2af9be47a6257f45f56300b9846a3e130679e8e231af9cec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Coefficients</topic><topic>Control</topic><topic>Differential equations</topic><topic>Dynamical Systems</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Maximum principle</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Stochastic processes</topic><topic>Systems Theory</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azizi, Hanine</creatorcontrib><creatorcontrib>Khelfallah, Nabil</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of dynamical and control systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azizi, Hanine</au><au>Khelfallah, Nabil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Maximum Principle for Optimal Control of BSDEs with Locally Lipschitz Coefficients</atitle><jtitle>Journal of dynamical and control systems</jtitle><stitle>J Dyn Control Syst</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>28</volume><issue>3</issue><spage>565</spage><epage>584</epage><pages>565-584</pages><issn>1079-2724</issn><eissn>1573-8698</eissn><abstract>The present paper studies a stochastic control problem for a locally Lipschitz backward stochastic differential equation. Assuming that the control domain is not necessarily convex, we establish a necessary and sufficient condition for optimality satisfied by all optimal controls. These conditions are described by a linear locally Lipschitz SDE and a maximum condition on the Hamiltonian. We first prove, under some convenient conditions, the existence of a unique solution to the resulting adjoint equation. Then, with the help of an approximation argument on the coefficients, we define a family of control problems with globally Lipschitz coefficients whereby we derive a stochastic maximum principle for near optimality to such approximated systems. Thereafter, we turn back to the original control problem by passing to the limits. As far as the authors are aware, this is the first version of the stochastic maximum principle covering the locally Lipschitz case.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10883-021-09558-x</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-9269-9829</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1079-2724 |
ispartof | Journal of dynamical and control systems, 2022-07, Vol.28 (3), p.565-584 |
issn | 1079-2724 1573-8698 |
language | eng |
recordid | cdi_proquest_journals_2687419041 |
source | SpringerNature Journals |
subjects | Approximation Calculus of Variations and Optimal Control Optimization Coefficients Control Differential equations Dynamical Systems Dynamical Systems and Ergodic Theory Mathematics Mathematics and Statistics Maximum principle Optimal control Optimization Stochastic processes Systems Theory Vibration |
title | The Maximum Principle for Optimal Control of BSDEs with Locally Lipschitz Coefficients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A31%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Maximum%20Principle%20for%20Optimal%20Control%20of%20BSDEs%20with%20Locally%20Lipschitz%20Coefficients&rft.jtitle=Journal%20of%20dynamical%20and%20control%20systems&rft.au=Azizi,%20Hanine&rft.date=2022-07-01&rft.volume=28&rft.issue=3&rft.spage=565&rft.epage=584&rft.pages=565-584&rft.issn=1079-2724&rft.eissn=1573-8698&rft_id=info:doi/10.1007/s10883-021-09558-x&rft_dat=%3Cproquest_cross%3E2687419041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2687419041&rft_id=info:pmid/&rfr_iscdi=true |