Optimization of fatigue life of pearlitic Grade 900A steel based on the combination of genetic algorithm and artificial neural network

•This paper is to optimize the fatigue life of pearlitic Grade 900A steel used in railway applications.•The FCP of the CT specimens of pearlitic Grade 900A steel have been studied.•An artificial neural network to predict m, OLR, and OCR has been designed.•The genetic algorithm is applied to find the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fatigue 2022-09, Vol.162, p.106975, Article 106975
Hauptverfasser: Masoudi Nejad, Reza, Sina, Nima, Ma, Wenchen, Liu, Zhiliang, Berto, Filippo, Gholami, Aboozar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106975
container_title International journal of fatigue
container_volume 162
creator Masoudi Nejad, Reza
Sina, Nima
Ma, Wenchen
Liu, Zhiliang
Berto, Filippo
Gholami, Aboozar
description •This paper is to optimize the fatigue life of pearlitic Grade 900A steel used in railway applications.•The FCP of the CT specimens of pearlitic Grade 900A steel have been studied.•An artificial neural network to predict m, OLR, and OCR has been designed.•The genetic algorithm is applied to find the maximum fatigue life based on the input values.•Sensitivity analysis is applied to the obtained artificial neural network values. In this paper, the fatigue life of pearlitic Grade 900A steel used in railway applications is investigated. To predict the fatigue life of pearlitic Grade 900A steel based on the number of cycles of the particular stress level in the load block, occurrence ratio and overload ratio, a feed-forward neural network is designed. The results of this artificial neural network are compared to the surface fitting method. Then sensitivity analysis is applied to the obtained artificial neural network values to measure the effect of each input parameter on the fatigue life. Finally, the genetic algorithm is applied to find the maximum fatigue life based on the input values.
doi_str_mv 10.1016/j.ijfatigue.2022.106975
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2686211809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142112322002432</els_id><sourcerecordid>2686211809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-20bbdac57e9a829ff980212bb664ff4daf900daf75619994ff92e48bf7cfb6d13</originalsourceid><addsrcrecordid>eNqFkMtOAzEMRSMEEqXwDURiPSVJ55VlVfGSKnUD6yiTcVoP00lJUhB8AN9NSlG3bGzZ8j22LyHXnE044-VtN8HO6oirHUwEEyJ1S1kVJ2TE60pm07wQp2TEeC4yzsX0nFyE0DHGJKuKEflebiNu8CsB3ECdpX8o2qOFfb0F7XuMaOiD1y1QydiMhgjQ00YHaGmSxTVQ4zYNDkfMCgbYi3S_ch7jekP10FLtI1o0qHs6wM7_pvjh_OslObO6D3D1l8fk5f7uef6YLZYPT_PZIjOimsZMsKZptSkqkLoW0lpZM8FF05Rlbm3eapvOS7EqSi6lTD0pIK8bWxnblC2fjsnNgbv17m0HIarO7fyQVipR1qXgvGYyTVWHKeNdCB6s2nrcaP-pOFN701WnjqarvenqYHpSzg5KSE-8I3gVDMJgoEUPJqrW4b-MH4ERkWo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2686211809</pqid></control><display><type>article</type><title>Optimization of fatigue life of pearlitic Grade 900A steel based on the combination of genetic algorithm and artificial neural network</title><source>Access via ScienceDirect (Elsevier)</source><creator>Masoudi Nejad, Reza ; Sina, Nima ; Ma, Wenchen ; Liu, Zhiliang ; Berto, Filippo ; Gholami, Aboozar</creator><creatorcontrib>Masoudi Nejad, Reza ; Sina, Nima ; Ma, Wenchen ; Liu, Zhiliang ; Berto, Filippo ; Gholami, Aboozar</creatorcontrib><description>•This paper is to optimize the fatigue life of pearlitic Grade 900A steel used in railway applications.•The FCP of the CT specimens of pearlitic Grade 900A steel have been studied.•An artificial neural network to predict m, OLR, and OCR has been designed.•The genetic algorithm is applied to find the maximum fatigue life based on the input values.•Sensitivity analysis is applied to the obtained artificial neural network values. In this paper, the fatigue life of pearlitic Grade 900A steel used in railway applications is investigated. To predict the fatigue life of pearlitic Grade 900A steel based on the number of cycles of the particular stress level in the load block, occurrence ratio and overload ratio, a feed-forward neural network is designed. The results of this artificial neural network are compared to the surface fitting method. Then sensitivity analysis is applied to the obtained artificial neural network values to measure the effect of each input parameter on the fatigue life. Finally, the genetic algorithm is applied to find the maximum fatigue life based on the input values.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/j.ijfatigue.2022.106975</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Artificial neural network ; Artificial neural networks ; Fatigue life ; Genetic algorithm ; Genetic algorithms ; Materials fatigue ; Optimization ; Rail steels ; Railway rail ; Sensitivity analysis ; Stress intensity factor</subject><ispartof>International journal of fatigue, 2022-09, Vol.162, p.106975, Article 106975</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-20bbdac57e9a829ff980212bb664ff4daf900daf75619994ff92e48bf7cfb6d13</citedby><cites>FETCH-LOGICAL-c273t-20bbdac57e9a829ff980212bb664ff4daf900daf75619994ff92e48bf7cfb6d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijfatigue.2022.106975$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids></links><search><creatorcontrib>Masoudi Nejad, Reza</creatorcontrib><creatorcontrib>Sina, Nima</creatorcontrib><creatorcontrib>Ma, Wenchen</creatorcontrib><creatorcontrib>Liu, Zhiliang</creatorcontrib><creatorcontrib>Berto, Filippo</creatorcontrib><creatorcontrib>Gholami, Aboozar</creatorcontrib><title>Optimization of fatigue life of pearlitic Grade 900A steel based on the combination of genetic algorithm and artificial neural network</title><title>International journal of fatigue</title><description>•This paper is to optimize the fatigue life of pearlitic Grade 900A steel used in railway applications.•The FCP of the CT specimens of pearlitic Grade 900A steel have been studied.•An artificial neural network to predict m, OLR, and OCR has been designed.•The genetic algorithm is applied to find the maximum fatigue life based on the input values.•Sensitivity analysis is applied to the obtained artificial neural network values. In this paper, the fatigue life of pearlitic Grade 900A steel used in railway applications is investigated. To predict the fatigue life of pearlitic Grade 900A steel based on the number of cycles of the particular stress level in the load block, occurrence ratio and overload ratio, a feed-forward neural network is designed. The results of this artificial neural network are compared to the surface fitting method. Then sensitivity analysis is applied to the obtained artificial neural network values to measure the effect of each input parameter on the fatigue life. Finally, the genetic algorithm is applied to find the maximum fatigue life based on the input values.</description><subject>Artificial neural network</subject><subject>Artificial neural networks</subject><subject>Fatigue life</subject><subject>Genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Materials fatigue</subject><subject>Optimization</subject><subject>Rail steels</subject><subject>Railway rail</subject><subject>Sensitivity analysis</subject><subject>Stress intensity factor</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOAzEMRSMEEqXwDURiPSVJ55VlVfGSKnUD6yiTcVoP00lJUhB8AN9NSlG3bGzZ8j22LyHXnE044-VtN8HO6oirHUwEEyJ1S1kVJ2TE60pm07wQp2TEeC4yzsX0nFyE0DHGJKuKEflebiNu8CsB3ECdpX8o2qOFfb0F7XuMaOiD1y1QydiMhgjQ00YHaGmSxTVQ4zYNDkfMCgbYi3S_ch7jekP10FLtI1o0qHs6wM7_pvjh_OslObO6D3D1l8fk5f7uef6YLZYPT_PZIjOimsZMsKZptSkqkLoW0lpZM8FF05Rlbm3eapvOS7EqSi6lTD0pIK8bWxnblC2fjsnNgbv17m0HIarO7fyQVipR1qXgvGYyTVWHKeNdCB6s2nrcaP-pOFN701WnjqarvenqYHpSzg5KSE-8I3gVDMJgoEUPJqrW4b-MH4ERkWo</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Masoudi Nejad, Reza</creator><creator>Sina, Nima</creator><creator>Ma, Wenchen</creator><creator>Liu, Zhiliang</creator><creator>Berto, Filippo</creator><creator>Gholami, Aboozar</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202209</creationdate><title>Optimization of fatigue life of pearlitic Grade 900A steel based on the combination of genetic algorithm and artificial neural network</title><author>Masoudi Nejad, Reza ; Sina, Nima ; Ma, Wenchen ; Liu, Zhiliang ; Berto, Filippo ; Gholami, Aboozar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-20bbdac57e9a829ff980212bb664ff4daf900daf75619994ff92e48bf7cfb6d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural network</topic><topic>Artificial neural networks</topic><topic>Fatigue life</topic><topic>Genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Materials fatigue</topic><topic>Optimization</topic><topic>Rail steels</topic><topic>Railway rail</topic><topic>Sensitivity analysis</topic><topic>Stress intensity factor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masoudi Nejad, Reza</creatorcontrib><creatorcontrib>Sina, Nima</creatorcontrib><creatorcontrib>Ma, Wenchen</creatorcontrib><creatorcontrib>Liu, Zhiliang</creatorcontrib><creatorcontrib>Berto, Filippo</creatorcontrib><creatorcontrib>Gholami, Aboozar</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masoudi Nejad, Reza</au><au>Sina, Nima</au><au>Ma, Wenchen</au><au>Liu, Zhiliang</au><au>Berto, Filippo</au><au>Gholami, Aboozar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of fatigue life of pearlitic Grade 900A steel based on the combination of genetic algorithm and artificial neural network</atitle><jtitle>International journal of fatigue</jtitle><date>2022-09</date><risdate>2022</risdate><volume>162</volume><spage>106975</spage><pages>106975-</pages><artnum>106975</artnum><issn>0142-1123</issn><eissn>1879-3452</eissn><abstract>•This paper is to optimize the fatigue life of pearlitic Grade 900A steel used in railway applications.•The FCP of the CT specimens of pearlitic Grade 900A steel have been studied.•An artificial neural network to predict m, OLR, and OCR has been designed.•The genetic algorithm is applied to find the maximum fatigue life based on the input values.•Sensitivity analysis is applied to the obtained artificial neural network values. In this paper, the fatigue life of pearlitic Grade 900A steel used in railway applications is investigated. To predict the fatigue life of pearlitic Grade 900A steel based on the number of cycles of the particular stress level in the load block, occurrence ratio and overload ratio, a feed-forward neural network is designed. The results of this artificial neural network are compared to the surface fitting method. Then sensitivity analysis is applied to the obtained artificial neural network values to measure the effect of each input parameter on the fatigue life. Finally, the genetic algorithm is applied to find the maximum fatigue life based on the input values.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijfatigue.2022.106975</doi></addata></record>
fulltext fulltext
identifier ISSN: 0142-1123
ispartof International journal of fatigue, 2022-09, Vol.162, p.106975, Article 106975
issn 0142-1123
1879-3452
language eng
recordid cdi_proquest_journals_2686211809
source Access via ScienceDirect (Elsevier)
subjects Artificial neural network
Artificial neural networks
Fatigue life
Genetic algorithm
Genetic algorithms
Materials fatigue
Optimization
Rail steels
Railway rail
Sensitivity analysis
Stress intensity factor
title Optimization of fatigue life of pearlitic Grade 900A steel based on the combination of genetic algorithm and artificial neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T11%3A01%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20fatigue%20life%20of%20pearlitic%20Grade%20900A%20steel%20based%20on%20the%20combination%20of%20genetic%20algorithm%20and%20artificial%20neural%20network&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Masoudi%20Nejad,%20Reza&rft.date=2022-09&rft.volume=162&rft.spage=106975&rft.pages=106975-&rft.artnum=106975&rft.issn=0142-1123&rft.eissn=1879-3452&rft_id=info:doi/10.1016/j.ijfatigue.2022.106975&rft_dat=%3Cproquest_cross%3E2686211809%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2686211809&rft_id=info:pmid/&rft_els_id=S0142112322002432&rfr_iscdi=true