Surface optimized P2-Na2/3Ni1/3Mn2/3O2 cathode material via conductive Al-doped ZnO for boosting sodium storage

Layered transition-metal oxides have been potential as high-performance cathode materials for sodium-ion batteries (SIBs), however, suffer from the undesirable side reactions between cathode/electrolyte interface during cycling. One improvement strategy by surface coatings is typically used, but at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2022-07, Vol.419, p.140394, Article 140394
Hauptverfasser: Xu, Kang, Yan, Mengmeng, Chang, Yu-Xin, Xing, Xuanxuan, Yu, Lianzheng, Xu, Sailong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 140394
container_title Electrochimica acta
container_volume 419
creator Xu, Kang
Yan, Mengmeng
Chang, Yu-Xin
Xing, Xuanxuan
Yu, Lianzheng
Xu, Sailong
description Layered transition-metal oxides have been potential as high-performance cathode materials for sodium-ion batteries (SIBs), however, suffer from the undesirable side reactions between cathode/electrolyte interface during cycling. One improvement strategy by surface coatings is typically used, but at the compromise of lowering ion transport kinetics and poor rate capability. Herein, we report a surface optimized high-rate P2-Na2/3Ni1/3Mn2/3O2 cathode material for SIBs via a highly conductive Al-doped ZnO (AZO). By tuning the calcination temperatures, the optimized cathode material coated with 1 wt% AZO at 500 °C exhibits decent cycling and rate performances (66.2 mAh g−1 with a capacity retention of 82.6% at 5C after 500 cycles). Electrochemical kinetics analysis demonstrates that the NM@AZO-500 exhibits a high Na+ diffusion coefficient and a low charge-transfer resistance, and in-situ X-ray diffraction (XRD) and ex-situ X-ray photoelectron spectroscopy (XPS) reveal that the AZO coating effectively relieves the lattice stress during cycles and inhibits undesirable side reaction; all of which give rise to the observed enhancement. The result promises an effective surface optimized route for high-performance cathode materials for SIBs by coating highly conductive oxide. [Display omitted]
doi_str_mv 10.1016/j.electacta.2022.140394
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2686211784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468622005564</els_id><sourcerecordid>2686211784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-b8cbea204755d2bc3d652a8454e093ccf2a670f9be29b6110ad948bb2432eda13</originalsourceid><addsrcrecordid>eNqFkFtLAzEQhYMoWKu_wYDP2-a2t8dSvEFtBfXFl5BNZmtKu1mTbEF_vSkVX4WBmYdzzsx8CF1TMqGEFtPNBLago0o1YYSxCRWE1-IEjWhV8oxXeX2KRoRQnomiKs7RRQgbQkhZlGSE3MvgW6UBuz7anf0Gg59ZtlRsypeWTvlTl6YVw1rFD2cA71QEb9UW763C2nVm0NHuAc-2mXF9cr93K9w6jxvnQrTdGgdn7LDDITqv1nCJzlq1DXD128fo7e72df6QLVb3j_PZItNc8Jg1lW5AMSLKPDes0dwUOVOVyAWQmmvdMpXOb-sGWN0UlBJlalE1DROcgVGUj9HNMbf37nOAEOXGDb5LKyVLFBilZSWSqjyqtHcheGhl7-1O-S9JiTzQlRv5R1ce6Moj3eScHZ2Qnthb8DJoC50GY33SS-Psvxk_K3OGRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2686211784</pqid></control><display><type>article</type><title>Surface optimized P2-Na2/3Ni1/3Mn2/3O2 cathode material via conductive Al-doped ZnO for boosting sodium storage</title><source>Elsevier ScienceDirect Journals</source><creator>Xu, Kang ; Yan, Mengmeng ; Chang, Yu-Xin ; Xing, Xuanxuan ; Yu, Lianzheng ; Xu, Sailong</creator><creatorcontrib>Xu, Kang ; Yan, Mengmeng ; Chang, Yu-Xin ; Xing, Xuanxuan ; Yu, Lianzheng ; Xu, Sailong</creatorcontrib><description>Layered transition-metal oxides have been potential as high-performance cathode materials for sodium-ion batteries (SIBs), however, suffer from the undesirable side reactions between cathode/electrolyte interface during cycling. One improvement strategy by surface coatings is typically used, but at the compromise of lowering ion transport kinetics and poor rate capability. Herein, we report a surface optimized high-rate P2-Na2/3Ni1/3Mn2/3O2 cathode material for SIBs via a highly conductive Al-doped ZnO (AZO). By tuning the calcination temperatures, the optimized cathode material coated with 1 wt% AZO at 500 °C exhibits decent cycling and rate performances (66.2 mAh g−1 with a capacity retention of 82.6% at 5C after 500 cycles). Electrochemical kinetics analysis demonstrates that the NM@AZO-500 exhibits a high Na+ diffusion coefficient and a low charge-transfer resistance, and in-situ X-ray diffraction (XRD) and ex-situ X-ray photoelectron spectroscopy (XPS) reveal that the AZO coating effectively relieves the lattice stress during cycles and inhibits undesirable side reaction; all of which give rise to the observed enhancement. The result promises an effective surface optimized route for high-performance cathode materials for SIBs by coating highly conductive oxide. [Display omitted]</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2022.140394</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Al-doped ZnO ; Aluminum ; Cathode materials ; Cathodes ; Charge transfer ; Diffusion coefficient ; Electrode materials ; Ion transport ; Kinetics ; Layered transition-metal oxides ; Oxide coatings ; Photoelectrons ; Sodium ; Sodium-ion batteries ; Surface coating ; Transition metal oxides ; X ray photoelectron spectroscopy ; Zinc oxide</subject><ispartof>Electrochimica acta, 2022-07, Vol.419, p.140394, Article 140394</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-b8cbea204755d2bc3d652a8454e093ccf2a670f9be29b6110ad948bb2432eda13</citedby><cites>FETCH-LOGICAL-c343t-b8cbea204755d2bc3d652a8454e093ccf2a670f9be29b6110ad948bb2432eda13</cites><orcidid>0000-0002-1999-9323 ; 0000-0003-3964-6418</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013468622005564$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Xu, Kang</creatorcontrib><creatorcontrib>Yan, Mengmeng</creatorcontrib><creatorcontrib>Chang, Yu-Xin</creatorcontrib><creatorcontrib>Xing, Xuanxuan</creatorcontrib><creatorcontrib>Yu, Lianzheng</creatorcontrib><creatorcontrib>Xu, Sailong</creatorcontrib><title>Surface optimized P2-Na2/3Ni1/3Mn2/3O2 cathode material via conductive Al-doped ZnO for boosting sodium storage</title><title>Electrochimica acta</title><description>Layered transition-metal oxides have been potential as high-performance cathode materials for sodium-ion batteries (SIBs), however, suffer from the undesirable side reactions between cathode/electrolyte interface during cycling. One improvement strategy by surface coatings is typically used, but at the compromise of lowering ion transport kinetics and poor rate capability. Herein, we report a surface optimized high-rate P2-Na2/3Ni1/3Mn2/3O2 cathode material for SIBs via a highly conductive Al-doped ZnO (AZO). By tuning the calcination temperatures, the optimized cathode material coated with 1 wt% AZO at 500 °C exhibits decent cycling and rate performances (66.2 mAh g−1 with a capacity retention of 82.6% at 5C after 500 cycles). Electrochemical kinetics analysis demonstrates that the NM@AZO-500 exhibits a high Na+ diffusion coefficient and a low charge-transfer resistance, and in-situ X-ray diffraction (XRD) and ex-situ X-ray photoelectron spectroscopy (XPS) reveal that the AZO coating effectively relieves the lattice stress during cycles and inhibits undesirable side reaction; all of which give rise to the observed enhancement. The result promises an effective surface optimized route for high-performance cathode materials for SIBs by coating highly conductive oxide. [Display omitted]</description><subject>Al-doped ZnO</subject><subject>Aluminum</subject><subject>Cathode materials</subject><subject>Cathodes</subject><subject>Charge transfer</subject><subject>Diffusion coefficient</subject><subject>Electrode materials</subject><subject>Ion transport</subject><subject>Kinetics</subject><subject>Layered transition-metal oxides</subject><subject>Oxide coatings</subject><subject>Photoelectrons</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Surface coating</subject><subject>Transition metal oxides</subject><subject>X ray photoelectron spectroscopy</subject><subject>Zinc oxide</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLAzEQhYMoWKu_wYDP2-a2t8dSvEFtBfXFl5BNZmtKu1mTbEF_vSkVX4WBmYdzzsx8CF1TMqGEFtPNBLago0o1YYSxCRWE1-IEjWhV8oxXeX2KRoRQnomiKs7RRQgbQkhZlGSE3MvgW6UBuz7anf0Gg59ZtlRsypeWTvlTl6YVw1rFD2cA71QEb9UW763C2nVm0NHuAc-2mXF9cr93K9w6jxvnQrTdGgdn7LDDITqv1nCJzlq1DXD128fo7e72df6QLVb3j_PZItNc8Jg1lW5AMSLKPDes0dwUOVOVyAWQmmvdMpXOb-sGWN0UlBJlalE1DROcgVGUj9HNMbf37nOAEOXGDb5LKyVLFBilZSWSqjyqtHcheGhl7-1O-S9JiTzQlRv5R1ce6Moj3eScHZ2Qnthb8DJoC50GY33SS-Psvxk_K3OGRw</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Xu, Kang</creator><creator>Yan, Mengmeng</creator><creator>Chang, Yu-Xin</creator><creator>Xing, Xuanxuan</creator><creator>Yu, Lianzheng</creator><creator>Xu, Sailong</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1999-9323</orcidid><orcidid>https://orcid.org/0000-0003-3964-6418</orcidid></search><sort><creationdate>20220701</creationdate><title>Surface optimized P2-Na2/3Ni1/3Mn2/3O2 cathode material via conductive Al-doped ZnO for boosting sodium storage</title><author>Xu, Kang ; Yan, Mengmeng ; Chang, Yu-Xin ; Xing, Xuanxuan ; Yu, Lianzheng ; Xu, Sailong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-b8cbea204755d2bc3d652a8454e093ccf2a670f9be29b6110ad948bb2432eda13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Al-doped ZnO</topic><topic>Aluminum</topic><topic>Cathode materials</topic><topic>Cathodes</topic><topic>Charge transfer</topic><topic>Diffusion coefficient</topic><topic>Electrode materials</topic><topic>Ion transport</topic><topic>Kinetics</topic><topic>Layered transition-metal oxides</topic><topic>Oxide coatings</topic><topic>Photoelectrons</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Surface coating</topic><topic>Transition metal oxides</topic><topic>X ray photoelectron spectroscopy</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Kang</creatorcontrib><creatorcontrib>Yan, Mengmeng</creatorcontrib><creatorcontrib>Chang, Yu-Xin</creatorcontrib><creatorcontrib>Xing, Xuanxuan</creatorcontrib><creatorcontrib>Yu, Lianzheng</creatorcontrib><creatorcontrib>Xu, Sailong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Kang</au><au>Yan, Mengmeng</au><au>Chang, Yu-Xin</au><au>Xing, Xuanxuan</au><au>Yu, Lianzheng</au><au>Xu, Sailong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface optimized P2-Na2/3Ni1/3Mn2/3O2 cathode material via conductive Al-doped ZnO for boosting sodium storage</atitle><jtitle>Electrochimica acta</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>419</volume><spage>140394</spage><pages>140394-</pages><artnum>140394</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Layered transition-metal oxides have been potential as high-performance cathode materials for sodium-ion batteries (SIBs), however, suffer from the undesirable side reactions between cathode/electrolyte interface during cycling. One improvement strategy by surface coatings is typically used, but at the compromise of lowering ion transport kinetics and poor rate capability. Herein, we report a surface optimized high-rate P2-Na2/3Ni1/3Mn2/3O2 cathode material for SIBs via a highly conductive Al-doped ZnO (AZO). By tuning the calcination temperatures, the optimized cathode material coated with 1 wt% AZO at 500 °C exhibits decent cycling and rate performances (66.2 mAh g−1 with a capacity retention of 82.6% at 5C after 500 cycles). Electrochemical kinetics analysis demonstrates that the NM@AZO-500 exhibits a high Na+ diffusion coefficient and a low charge-transfer resistance, and in-situ X-ray diffraction (XRD) and ex-situ X-ray photoelectron spectroscopy (XPS) reveal that the AZO coating effectively relieves the lattice stress during cycles and inhibits undesirable side reaction; all of which give rise to the observed enhancement. The result promises an effective surface optimized route for high-performance cathode materials for SIBs by coating highly conductive oxide. [Display omitted]</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2022.140394</doi><orcidid>https://orcid.org/0000-0002-1999-9323</orcidid><orcidid>https://orcid.org/0000-0003-3964-6418</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2022-07, Vol.419, p.140394, Article 140394
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_2686211784
source Elsevier ScienceDirect Journals
subjects Al-doped ZnO
Aluminum
Cathode materials
Cathodes
Charge transfer
Diffusion coefficient
Electrode materials
Ion transport
Kinetics
Layered transition-metal oxides
Oxide coatings
Photoelectrons
Sodium
Sodium-ion batteries
Surface coating
Transition metal oxides
X ray photoelectron spectroscopy
Zinc oxide
title Surface optimized P2-Na2/3Ni1/3Mn2/3O2 cathode material via conductive Al-doped ZnO for boosting sodium storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A35%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20optimized%20P2-Na2/3Ni1/3Mn2/3O2%20cathode%20material%20via%20conductive%20Al-doped%20ZnO%20for%20boosting%20sodium%20storage&rft.jtitle=Electrochimica%20acta&rft.au=Xu,%20Kang&rft.date=2022-07-01&rft.volume=419&rft.spage=140394&rft.pages=140394-&rft.artnum=140394&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2022.140394&rft_dat=%3Cproquest_cross%3E2686211784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2686211784&rft_id=info:pmid/&rft_els_id=S0013468622005564&rfr_iscdi=true