X‐ray photoelectron spectroscopy‐based valence band spectra of passive films on titanium

Titanium (Ti) is always covered by thin passive films. Thus, valence band (VB) spectra, obtained using X‐ray photoelectron spectroscopy (XPS), are superpositions of the VB spectra of passive films and that of the metallic Ti substrate. In this study, to obtain the VB spectra only of passive films, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface and interface analysis 2022-08, Vol.54 (8), p.892-898
Hauptverfasser: Eda, Yuzuki, Manaka, Tomoyo, Hanawa, Takao, Chen, Peng, Ashida, Maki, Noda, Kazuhiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 898
container_issue 8
container_start_page 892
container_title Surface and interface analysis
container_volume 54
creator Eda, Yuzuki
Manaka, Tomoyo
Hanawa, Takao
Chen, Peng
Ashida, Maki
Noda, Kazuhiko
description Titanium (Ti) is always covered by thin passive films. Thus, valence band (VB) spectra, obtained using X‐ray photoelectron spectroscopy (XPS), are superpositions of the VB spectra of passive films and that of the metallic Ti substrate. In this study, to obtain the VB spectra only of passive films, angular resolution (for eliminating the substrate Ti contribution) and argon ion sputtering (for removing passive films) were used along with XPS. The passive film on Ti was determined to consist of a very thin TiO2layer with small amounts of Ti2O3, TiO, hydroxyl groups, and water with a thickness of 5.9 nm. The VB spectra of Ti were deconvoluted into four peak components: a peak at ~1 eV, attributed to the Ti metal substrate; a broad peak in the 3–10 eV range, mainly attributed to O 2p (~6 eV) and O 2p‐Ti 3d hybridized states (~8 eV), owing to the π (non‐bonding) and σ (bonding) orbitals in the passive oxide film; and a peak at ~13 eV, attributed to the 3σ orbital of O 2p as OH−or H2O. The VB region spectrum between approximately 3 and 14 eV from Ti is originating from the passive film on Ti. In particular, characterization of VB spectrum obtained with a takeoff angle of less than 24° is effective to obtain VB spectrum only from the passive film on Ti. The property as n‐type semiconductor of the passive film on Ti is probably higher than that of rutile TiO2ceramics.
doi_str_mv 10.1002/sia.7102
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2685999091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2685999091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4372-21b5d2f2817fc6d1ab27116d3235fcc25f42bb5e6ac2c1e444ca4749413669bf3</originalsourceid><addsrcrecordid>eNp10L1OwzAQB3ALgUQpSDyCJRaWFJ_jOPFYVVAqVWIAJAYky3ZskSqNQ5wWZeMReEaeBPdjZfINv7vz_RG6BjIBQuhdqNQkB0JP0AiI4IkQUJyiEQFGE8oonKOLEFaEkCIt-Ai9v_1-_3RqwO2H772trek73-DQ7otgfDtEoFWwJd6q2jbGYq2a8igU9g63KoRqa7Gr6nXAsbuvetVUm_UlOnOqDvbq-I7R68P9y-wxWT7NF7PpMjEszeO3QGcldbSA3BlegtI0B-BlStPMGUMzx6jWmeXKUAOWMWYUy5lgkHIutEvH6OYwt-3858aGXq78pmviSkl5kQkhiICobg_KxMNCZ51su2qtukECkbvsZMxO7rKLNDnQr6q2w79OPi-me_8H5D5yfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685999091</pqid></control><display><type>article</type><title>X‐ray photoelectron spectroscopy‐based valence band spectra of passive films on titanium</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Eda, Yuzuki ; Manaka, Tomoyo ; Hanawa, Takao ; Chen, Peng ; Ashida, Maki ; Noda, Kazuhiko</creator><creatorcontrib>Eda, Yuzuki ; Manaka, Tomoyo ; Hanawa, Takao ; Chen, Peng ; Ashida, Maki ; Noda, Kazuhiko</creatorcontrib><description>Titanium (Ti) is always covered by thin passive films. Thus, valence band (VB) spectra, obtained using X‐ray photoelectron spectroscopy (XPS), are superpositions of the VB spectra of passive films and that of the metallic Ti substrate. In this study, to obtain the VB spectra only of passive films, angular resolution (for eliminating the substrate Ti contribution) and argon ion sputtering (for removing passive films) were used along with XPS. The passive film on Ti was determined to consist of a very thin TiO2layer with small amounts of Ti2O3, TiO, hydroxyl groups, and water with a thickness of 5.9 nm. The VB spectra of Ti were deconvoluted into four peak components: a peak at ~1 eV, attributed to the Ti metal substrate; a broad peak in the 3–10 eV range, mainly attributed to O 2p (~6 eV) and O 2p‐Ti 3d hybridized states (~8 eV), owing to the π (non‐bonding) and σ (bonding) orbitals in the passive oxide film; and a peak at ~13 eV, attributed to the 3σ orbital of O 2p as OH−or H2O. The VB region spectrum between approximately 3 and 14 eV from Ti is originating from the passive film on Ti. In particular, characterization of VB spectrum obtained with a takeoff angle of less than 24° is effective to obtain VB spectrum only from the passive film on Ti. The property as n‐type semiconductor of the passive film on Ti is probably higher than that of rutile TiO2ceramics.</description><identifier>ISSN: 0142-2421</identifier><identifier>EISSN: 1096-9918</identifier><identifier>DOI: 10.1002/sia.7102</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Angular resolution ; Argon ions ; Bonding ; Electrons ; Hydroxyl groups ; Oxide coatings ; passive film ; Photoelectron spectroscopy ; Photoelectrons ; Spectra ; Spectrum analysis ; Substrates ; Thin films ; titanium ; Titanium oxides ; Valence band ; X‐ray photoelectron spectroscopy</subject><ispartof>Surface and interface analysis, 2022-08, Vol.54 (8), p.892-898</ispartof><rights>2022 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4372-21b5d2f2817fc6d1ab27116d3235fcc25f42bb5e6ac2c1e444ca4749413669bf3</citedby><cites>FETCH-LOGICAL-c4372-21b5d2f2817fc6d1ab27116d3235fcc25f42bb5e6ac2c1e444ca4749413669bf3</cites><orcidid>0000-0003-0582-9654 ; 0000-0003-0007-0407 ; 0000-0001-9649-2035 ; 0000-0003-1688-1749 ; 0000-0002-5131-6043 ; 0000-0002-8476-7369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsia.7102$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsia.7102$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Eda, Yuzuki</creatorcontrib><creatorcontrib>Manaka, Tomoyo</creatorcontrib><creatorcontrib>Hanawa, Takao</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Ashida, Maki</creatorcontrib><creatorcontrib>Noda, Kazuhiko</creatorcontrib><title>X‐ray photoelectron spectroscopy‐based valence band spectra of passive films on titanium</title><title>Surface and interface analysis</title><description>Titanium (Ti) is always covered by thin passive films. Thus, valence band (VB) spectra, obtained using X‐ray photoelectron spectroscopy (XPS), are superpositions of the VB spectra of passive films and that of the metallic Ti substrate. In this study, to obtain the VB spectra only of passive films, angular resolution (for eliminating the substrate Ti contribution) and argon ion sputtering (for removing passive films) were used along with XPS. The passive film on Ti was determined to consist of a very thin TiO2layer with small amounts of Ti2O3, TiO, hydroxyl groups, and water with a thickness of 5.9 nm. The VB spectra of Ti were deconvoluted into four peak components: a peak at ~1 eV, attributed to the Ti metal substrate; a broad peak in the 3–10 eV range, mainly attributed to O 2p (~6 eV) and O 2p‐Ti 3d hybridized states (~8 eV), owing to the π (non‐bonding) and σ (bonding) orbitals in the passive oxide film; and a peak at ~13 eV, attributed to the 3σ orbital of O 2p as OH−or H2O. The VB region spectrum between approximately 3 and 14 eV from Ti is originating from the passive film on Ti. In particular, characterization of VB spectrum obtained with a takeoff angle of less than 24° is effective to obtain VB spectrum only from the passive film on Ti. The property as n‐type semiconductor of the passive film on Ti is probably higher than that of rutile TiO2ceramics.</description><subject>Angular resolution</subject><subject>Argon ions</subject><subject>Bonding</subject><subject>Electrons</subject><subject>Hydroxyl groups</subject><subject>Oxide coatings</subject><subject>passive film</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Spectra</subject><subject>Spectrum analysis</subject><subject>Substrates</subject><subject>Thin films</subject><subject>titanium</subject><subject>Titanium oxides</subject><subject>Valence band</subject><subject>X‐ray photoelectron spectroscopy</subject><issn>0142-2421</issn><issn>1096-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp10L1OwzAQB3ALgUQpSDyCJRaWFJ_jOPFYVVAqVWIAJAYky3ZskSqNQ5wWZeMReEaeBPdjZfINv7vz_RG6BjIBQuhdqNQkB0JP0AiI4IkQUJyiEQFGE8oonKOLEFaEkCIt-Ai9v_1-_3RqwO2H772trek73-DQ7otgfDtEoFWwJd6q2jbGYq2a8igU9g63KoRqa7Gr6nXAsbuvetVUm_UlOnOqDvbq-I7R68P9y-wxWT7NF7PpMjEszeO3QGcldbSA3BlegtI0B-BlStPMGUMzx6jWmeXKUAOWMWYUy5lgkHIutEvH6OYwt-3858aGXq78pmviSkl5kQkhiICobg_KxMNCZ51su2qtukECkbvsZMxO7rKLNDnQr6q2w79OPi-me_8H5D5yfQ</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Eda, Yuzuki</creator><creator>Manaka, Tomoyo</creator><creator>Hanawa, Takao</creator><creator>Chen, Peng</creator><creator>Ashida, Maki</creator><creator>Noda, Kazuhiko</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0582-9654</orcidid><orcidid>https://orcid.org/0000-0003-0007-0407</orcidid><orcidid>https://orcid.org/0000-0001-9649-2035</orcidid><orcidid>https://orcid.org/0000-0003-1688-1749</orcidid><orcidid>https://orcid.org/0000-0002-5131-6043</orcidid><orcidid>https://orcid.org/0000-0002-8476-7369</orcidid></search><sort><creationdate>202208</creationdate><title>X‐ray photoelectron spectroscopy‐based valence band spectra of passive films on titanium</title><author>Eda, Yuzuki ; Manaka, Tomoyo ; Hanawa, Takao ; Chen, Peng ; Ashida, Maki ; Noda, Kazuhiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4372-21b5d2f2817fc6d1ab27116d3235fcc25f42bb5e6ac2c1e444ca4749413669bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Angular resolution</topic><topic>Argon ions</topic><topic>Bonding</topic><topic>Electrons</topic><topic>Hydroxyl groups</topic><topic>Oxide coatings</topic><topic>passive film</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Spectra</topic><topic>Spectrum analysis</topic><topic>Substrates</topic><topic>Thin films</topic><topic>titanium</topic><topic>Titanium oxides</topic><topic>Valence band</topic><topic>X‐ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eda, Yuzuki</creatorcontrib><creatorcontrib>Manaka, Tomoyo</creatorcontrib><creatorcontrib>Hanawa, Takao</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Ashida, Maki</creatorcontrib><creatorcontrib>Noda, Kazuhiko</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface and interface analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eda, Yuzuki</au><au>Manaka, Tomoyo</au><au>Hanawa, Takao</au><au>Chen, Peng</au><au>Ashida, Maki</au><au>Noda, Kazuhiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>X‐ray photoelectron spectroscopy‐based valence band spectra of passive films on titanium</atitle><jtitle>Surface and interface analysis</jtitle><date>2022-08</date><risdate>2022</risdate><volume>54</volume><issue>8</issue><spage>892</spage><epage>898</epage><pages>892-898</pages><issn>0142-2421</issn><eissn>1096-9918</eissn><abstract>Titanium (Ti) is always covered by thin passive films. Thus, valence band (VB) spectra, obtained using X‐ray photoelectron spectroscopy (XPS), are superpositions of the VB spectra of passive films and that of the metallic Ti substrate. In this study, to obtain the VB spectra only of passive films, angular resolution (for eliminating the substrate Ti contribution) and argon ion sputtering (for removing passive films) were used along with XPS. The passive film on Ti was determined to consist of a very thin TiO2layer with small amounts of Ti2O3, TiO, hydroxyl groups, and water with a thickness of 5.9 nm. The VB spectra of Ti were deconvoluted into four peak components: a peak at ~1 eV, attributed to the Ti metal substrate; a broad peak in the 3–10 eV range, mainly attributed to O 2p (~6 eV) and O 2p‐Ti 3d hybridized states (~8 eV), owing to the π (non‐bonding) and σ (bonding) orbitals in the passive oxide film; and a peak at ~13 eV, attributed to the 3σ orbital of O 2p as OH−or H2O. The VB region spectrum between approximately 3 and 14 eV from Ti is originating from the passive film on Ti. In particular, characterization of VB spectrum obtained with a takeoff angle of less than 24° is effective to obtain VB spectrum only from the passive film on Ti. The property as n‐type semiconductor of the passive film on Ti is probably higher than that of rutile TiO2ceramics.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/sia.7102</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0582-9654</orcidid><orcidid>https://orcid.org/0000-0003-0007-0407</orcidid><orcidid>https://orcid.org/0000-0001-9649-2035</orcidid><orcidid>https://orcid.org/0000-0003-1688-1749</orcidid><orcidid>https://orcid.org/0000-0002-5131-6043</orcidid><orcidid>https://orcid.org/0000-0002-8476-7369</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-2421
ispartof Surface and interface analysis, 2022-08, Vol.54 (8), p.892-898
issn 0142-2421
1096-9918
language eng
recordid cdi_proquest_journals_2685999091
source Wiley Online Library Journals Frontfile Complete
subjects Angular resolution
Argon ions
Bonding
Electrons
Hydroxyl groups
Oxide coatings
passive film
Photoelectron spectroscopy
Photoelectrons
Spectra
Spectrum analysis
Substrates
Thin films
titanium
Titanium oxides
Valence band
X‐ray photoelectron spectroscopy
title X‐ray photoelectron spectroscopy‐based valence band spectra of passive films on titanium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A45%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=X%E2%80%90ray%20photoelectron%20spectroscopy%E2%80%90based%20valence%20band%20spectra%20of%20passive%20films%20on%20titanium&rft.jtitle=Surface%20and%20interface%20analysis&rft.au=Eda,%20Yuzuki&rft.date=2022-08&rft.volume=54&rft.issue=8&rft.spage=892&rft.epage=898&rft.pages=892-898&rft.issn=0142-2421&rft.eissn=1096-9918&rft_id=info:doi/10.1002/sia.7102&rft_dat=%3Cproquest_cross%3E2685999091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685999091&rft_id=info:pmid/&rfr_iscdi=true