Intelligent Speed Control and Performance Investigation of a Vector Controlled Electric Vehicle Considering Driving Cycles

In this paper, battery electric vehicle (BEV) controllers are smartly tuned with particle swarm optimization (PSO) and genetic algorithm (GA) to ensure good speed regulation. Intelligent tuning is ensured with a proposed and well-defined cost function that aims to satisfy the design requirements in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2022-07, Vol.11 (13), p.1925
Hauptverfasser: Oubelaid, Adel, Taib, Nabil, Nikolovski, Srete, Alharbi, Turki E. A., Rekioua, Toufik, Flah, Aymen, Ghoneim, Sherif S. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page 1925
container_title Electronics (Basel)
container_volume 11
creator Oubelaid, Adel
Taib, Nabil
Nikolovski, Srete
Alharbi, Turki E. A.
Rekioua, Toufik
Flah, Aymen
Ghoneim, Sherif S. M.
description In this paper, battery electric vehicle (BEV) controllers are smartly tuned with particle swarm optimization (PSO) and genetic algorithm (GA) to ensure good speed regulation. Intelligent tuning is ensured with a proposed and well-defined cost function that aims to satisfy the design requirements in terms of minimum overshoot, fast response, and tolerable steady state input. Two proposed cost functions are formulated for both simple speed input and for driving cycles. The BEV is controlled with the field oriented control technique (FOC), and it is driven by a permanent magnet synchronous motor (PMSM). An efficient control scheme based on FOC is built using a simplified closed loop control system including BEV components such as regulators, inverter, traction machine, and sensors. Simulation results show that the optimum controller gains obtained by intelligent tuning have resulted in satisfactory BEV performance that sustains the harsh environmental conditions. Robustness tests against BEV parameter changes and environmental parameter variations confirmed the effectiveness of intelligent tuning methods.
doi_str_mv 10.3390/electronics11131925
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2685981509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A723418535</galeid><sourcerecordid>A723418535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-7dc0744c92c03a6ee0b16661eb93273a6f4d9057f8a08eba710fd2c6063d1fda3</originalsourceid><addsrcrecordid>eNptUUtLAzEQXkTBov0FXgKet-axrxzLWrVQUPBxXdJksqakSU22hfrrTa2CB2cOM8w33zczTJZdETxhjOMbsCCH4J2RkRDCCKflSTaiuOY5p5ye_snPs3GMK5yME9YwPMo-524Aa00PbkDPGwCFWu-SnEXCKfQEQfuwFk4CmrsdxMH0YjDeIa-RQG9psg-_DJvIs-9ljEzQu5EWDlg0CoJxPboNZneI7T4h8TI708JGGP_Ei-z1bvbSPuSLx_t5O13kklVkyGslcV0UklOJmagA8JJUVUVgyRmtU0UXiuOy1o3ADSxFTbBWVFa4YopoJdhFdn3U3QT_sU0ndCu_DS6N7GjVlLwhJeapa3Ls6oWFzjjthyBkcgVrI70DbVJ9WlNWkKZkZSKwI0EGH2MA3W2CWYuw7wjuDo_p_nkM-wI6WoWY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685981509</pqid></control><display><type>article</type><title>Intelligent Speed Control and Performance Investigation of a Vector Controlled Electric Vehicle Considering Driving Cycles</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Oubelaid, Adel ; Taib, Nabil ; Nikolovski, Srete ; Alharbi, Turki E. A. ; Rekioua, Toufik ; Flah, Aymen ; Ghoneim, Sherif S. M.</creator><creatorcontrib>Oubelaid, Adel ; Taib, Nabil ; Nikolovski, Srete ; Alharbi, Turki E. A. ; Rekioua, Toufik ; Flah, Aymen ; Ghoneim, Sherif S. M.</creatorcontrib><description>In this paper, battery electric vehicle (BEV) controllers are smartly tuned with particle swarm optimization (PSO) and genetic algorithm (GA) to ensure good speed regulation. Intelligent tuning is ensured with a proposed and well-defined cost function that aims to satisfy the design requirements in terms of minimum overshoot, fast response, and tolerable steady state input. Two proposed cost functions are formulated for both simple speed input and for driving cycles. The BEV is controlled with the field oriented control technique (FOC), and it is driven by a permanent magnet synchronous motor (PMSM). An efficient control scheme based on FOC is built using a simplified closed loop control system including BEV components such as regulators, inverter, traction machine, and sensors. Simulation results show that the optimum controller gains obtained by intelligent tuning have resulted in satisfactory BEV performance that sustains the harsh environmental conditions. Robustness tests against BEV parameter changes and environmental parameter variations confirmed the effectiveness of intelligent tuning methods.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11131925</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Alternative energy sources ; Automotive engineering ; Battery cycles ; Biogeography ; Closed loops ; Consumption ; Control systems ; Controllers ; Convex analysis ; Cost function ; Design and construction ; Electric vehicles ; Emissions ; Energy management ; Energy resources ; Environmental testing ; Feedback control ; Genetic algorithms ; Mathematical optimization ; Methods ; Optimization algorithms ; Optimization techniques ; Parameters ; Particle swarm optimization ; Permanent magnets ; Regulation ; Renewable resources ; Speed control ; Synchronous motors ; Tires ; Trends ; Tuning</subject><ispartof>Electronics (Basel), 2022-07, Vol.11 (13), p.1925</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-7dc0744c92c03a6ee0b16661eb93273a6f4d9057f8a08eba710fd2c6063d1fda3</citedby><cites>FETCH-LOGICAL-c361t-7dc0744c92c03a6ee0b16661eb93273a6f4d9057f8a08eba710fd2c6063d1fda3</cites><orcidid>0000-0002-9033-4332 ; 0000-0001-5770-5923 ; 0000-0003-2659-5631 ; 0000-0002-3463-6096 ; 0000-0002-5499-6953 ; 0000-0002-9387-1950</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Oubelaid, Adel</creatorcontrib><creatorcontrib>Taib, Nabil</creatorcontrib><creatorcontrib>Nikolovski, Srete</creatorcontrib><creatorcontrib>Alharbi, Turki E. A.</creatorcontrib><creatorcontrib>Rekioua, Toufik</creatorcontrib><creatorcontrib>Flah, Aymen</creatorcontrib><creatorcontrib>Ghoneim, Sherif S. M.</creatorcontrib><title>Intelligent Speed Control and Performance Investigation of a Vector Controlled Electric Vehicle Considering Driving Cycles</title><title>Electronics (Basel)</title><description>In this paper, battery electric vehicle (BEV) controllers are smartly tuned with particle swarm optimization (PSO) and genetic algorithm (GA) to ensure good speed regulation. Intelligent tuning is ensured with a proposed and well-defined cost function that aims to satisfy the design requirements in terms of minimum overshoot, fast response, and tolerable steady state input. Two proposed cost functions are formulated for both simple speed input and for driving cycles. The BEV is controlled with the field oriented control technique (FOC), and it is driven by a permanent magnet synchronous motor (PMSM). An efficient control scheme based on FOC is built using a simplified closed loop control system including BEV components such as regulators, inverter, traction machine, and sensors. Simulation results show that the optimum controller gains obtained by intelligent tuning have resulted in satisfactory BEV performance that sustains the harsh environmental conditions. Robustness tests against BEV parameter changes and environmental parameter variations confirmed the effectiveness of intelligent tuning methods.</description><subject>Algorithms</subject><subject>Alternative energy sources</subject><subject>Automotive engineering</subject><subject>Battery cycles</subject><subject>Biogeography</subject><subject>Closed loops</subject><subject>Consumption</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Convex analysis</subject><subject>Cost function</subject><subject>Design and construction</subject><subject>Electric vehicles</subject><subject>Emissions</subject><subject>Energy management</subject><subject>Energy resources</subject><subject>Environmental testing</subject><subject>Feedback control</subject><subject>Genetic algorithms</subject><subject>Mathematical optimization</subject><subject>Methods</subject><subject>Optimization algorithms</subject><subject>Optimization techniques</subject><subject>Parameters</subject><subject>Particle swarm optimization</subject><subject>Permanent magnets</subject><subject>Regulation</subject><subject>Renewable resources</subject><subject>Speed control</subject><subject>Synchronous motors</subject><subject>Tires</subject><subject>Trends</subject><subject>Tuning</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUUtLAzEQXkTBov0FXgKet-axrxzLWrVQUPBxXdJksqakSU22hfrrTa2CB2cOM8w33zczTJZdETxhjOMbsCCH4J2RkRDCCKflSTaiuOY5p5ye_snPs3GMK5yME9YwPMo-524Aa00PbkDPGwCFWu-SnEXCKfQEQfuwFk4CmrsdxMH0YjDeIa-RQG9psg-_DJvIs-9ljEzQu5EWDlg0CoJxPboNZneI7T4h8TI708JGGP_Ei-z1bvbSPuSLx_t5O13kklVkyGslcV0UklOJmagA8JJUVUVgyRmtU0UXiuOy1o3ADSxFTbBWVFa4YopoJdhFdn3U3QT_sU0ndCu_DS6N7GjVlLwhJeapa3Ls6oWFzjjthyBkcgVrI70DbVJ9WlNWkKZkZSKwI0EGH2MA3W2CWYuw7wjuDo_p_nkM-wI6WoWY</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Oubelaid, Adel</creator><creator>Taib, Nabil</creator><creator>Nikolovski, Srete</creator><creator>Alharbi, Turki E. A.</creator><creator>Rekioua, Toufik</creator><creator>Flah, Aymen</creator><creator>Ghoneim, Sherif S. M.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9033-4332</orcidid><orcidid>https://orcid.org/0000-0001-5770-5923</orcidid><orcidid>https://orcid.org/0000-0003-2659-5631</orcidid><orcidid>https://orcid.org/0000-0002-3463-6096</orcidid><orcidid>https://orcid.org/0000-0002-5499-6953</orcidid><orcidid>https://orcid.org/0000-0002-9387-1950</orcidid></search><sort><creationdate>20220701</creationdate><title>Intelligent Speed Control and Performance Investigation of a Vector Controlled Electric Vehicle Considering Driving Cycles</title><author>Oubelaid, Adel ; Taib, Nabil ; Nikolovski, Srete ; Alharbi, Turki E. A. ; Rekioua, Toufik ; Flah, Aymen ; Ghoneim, Sherif S. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-7dc0744c92c03a6ee0b16661eb93273a6f4d9057f8a08eba710fd2c6063d1fda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Alternative energy sources</topic><topic>Automotive engineering</topic><topic>Battery cycles</topic><topic>Biogeography</topic><topic>Closed loops</topic><topic>Consumption</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Convex analysis</topic><topic>Cost function</topic><topic>Design and construction</topic><topic>Electric vehicles</topic><topic>Emissions</topic><topic>Energy management</topic><topic>Energy resources</topic><topic>Environmental testing</topic><topic>Feedback control</topic><topic>Genetic algorithms</topic><topic>Mathematical optimization</topic><topic>Methods</topic><topic>Optimization algorithms</topic><topic>Optimization techniques</topic><topic>Parameters</topic><topic>Particle swarm optimization</topic><topic>Permanent magnets</topic><topic>Regulation</topic><topic>Renewable resources</topic><topic>Speed control</topic><topic>Synchronous motors</topic><topic>Tires</topic><topic>Trends</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oubelaid, Adel</creatorcontrib><creatorcontrib>Taib, Nabil</creatorcontrib><creatorcontrib>Nikolovski, Srete</creatorcontrib><creatorcontrib>Alharbi, Turki E. A.</creatorcontrib><creatorcontrib>Rekioua, Toufik</creatorcontrib><creatorcontrib>Flah, Aymen</creatorcontrib><creatorcontrib>Ghoneim, Sherif S. M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oubelaid, Adel</au><au>Taib, Nabil</au><au>Nikolovski, Srete</au><au>Alharbi, Turki E. A.</au><au>Rekioua, Toufik</au><au>Flah, Aymen</au><au>Ghoneim, Sherif S. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Speed Control and Performance Investigation of a Vector Controlled Electric Vehicle Considering Driving Cycles</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>11</volume><issue>13</issue><spage>1925</spage><pages>1925-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>In this paper, battery electric vehicle (BEV) controllers are smartly tuned with particle swarm optimization (PSO) and genetic algorithm (GA) to ensure good speed regulation. Intelligent tuning is ensured with a proposed and well-defined cost function that aims to satisfy the design requirements in terms of minimum overshoot, fast response, and tolerable steady state input. Two proposed cost functions are formulated for both simple speed input and for driving cycles. The BEV is controlled with the field oriented control technique (FOC), and it is driven by a permanent magnet synchronous motor (PMSM). An efficient control scheme based on FOC is built using a simplified closed loop control system including BEV components such as regulators, inverter, traction machine, and sensors. Simulation results show that the optimum controller gains obtained by intelligent tuning have resulted in satisfactory BEV performance that sustains the harsh environmental conditions. Robustness tests against BEV parameter changes and environmental parameter variations confirmed the effectiveness of intelligent tuning methods.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11131925</doi><orcidid>https://orcid.org/0000-0002-9033-4332</orcidid><orcidid>https://orcid.org/0000-0001-5770-5923</orcidid><orcidid>https://orcid.org/0000-0003-2659-5631</orcidid><orcidid>https://orcid.org/0000-0002-3463-6096</orcidid><orcidid>https://orcid.org/0000-0002-5499-6953</orcidid><orcidid>https://orcid.org/0000-0002-9387-1950</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2022-07, Vol.11 (13), p.1925
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2685981509
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Alternative energy sources
Automotive engineering
Battery cycles
Biogeography
Closed loops
Consumption
Control systems
Controllers
Convex analysis
Cost function
Design and construction
Electric vehicles
Emissions
Energy management
Energy resources
Environmental testing
Feedback control
Genetic algorithms
Mathematical optimization
Methods
Optimization algorithms
Optimization techniques
Parameters
Particle swarm optimization
Permanent magnets
Regulation
Renewable resources
Speed control
Synchronous motors
Tires
Trends
Tuning
title Intelligent Speed Control and Performance Investigation of a Vector Controlled Electric Vehicle Considering Driving Cycles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A48%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Speed%20Control%20and%20Performance%20Investigation%20of%20a%20Vector%20Controlled%20Electric%20Vehicle%20Considering%20Driving%20Cycles&rft.jtitle=Electronics%20(Basel)&rft.au=Oubelaid,%20Adel&rft.date=2022-07-01&rft.volume=11&rft.issue=13&rft.spage=1925&rft.pages=1925-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11131925&rft_dat=%3Cgale_proqu%3EA723418535%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685981509&rft_id=info:pmid/&rft_galeid=A723418535&rfr_iscdi=true