Biotite composition as a tracer of fluid evolution and mineralization center: a case study at the Qulong porphyry Cu-Mo deposit, Tibet
Porphyry Cu-Mo deposits are magmatic-hydrothermal deposits in which sulfide and oxide minerals precipitate from aqueous solutions. However, many questions remain about the composition and evolution of the magmatic-hydrothermal fluids responsible for mineralization. In response to this knowledge gap...
Gespeichert in:
Veröffentlicht in: | Mineralium deposita 2022-08, Vol.57 (6), p.1047-1069 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1069 |
---|---|
container_issue | 6 |
container_start_page | 1047 |
container_title | Mineralium deposita |
container_volume | 57 |
creator | Yu, Kelong Li, Guangming Zhao, Junxing Evans, Noreen J. Li, Jinxiang Jiang, Guangwu Zou, Xinyu Qin, Kezhang Guo, Hu |
description | Porphyry Cu-Mo deposits are magmatic-hydrothermal deposits in which sulfide and oxide minerals precipitate from aqueous solutions. However, many questions remain about the composition and evolution of the magmatic-hydrothermal fluids responsible for mineralization. In response to this knowledge gap at the Qulong porphyry Cu-Mo deposit, Tibet, we present a comprehensive major and trace element dataset for biotite (including halogens) from Qulong to elucidate magmatic-hydrothermal fluid compositions and fluid evolution. Based on genesis and occurrence, biotite is divided into primary (igneous), re-equilibrated (igneous modified by hydrothermal fluids), and secondary (hydrothermal) types. All studied biotite grains are Mg-rich, and X
Mg
values (0.59–0.90) increased during fluid evolution, perhaps controlled by high oxygen fugacity (
f
O
2
) and sulfur fugacity (
f
S
2
) in the magmatic-hydrothermal fluids. The IV(F) and IV(Cl) values and halogen fugacity of biotite indicate that Cl-rich fluids were dominant during early magmatic-hydrothermal evolution, while later fluids were enriched in F. This is consistent with early Cu and late Mo enrichment in the Qulong deposit. We propose a fluid evolution model based on in situ major and trace element data and cross-cutting relationships between the intrusions and the veins. Iron, Ti, Co, Ni, Zn, and Cl contents decreased, while Mg, Si, Al, Sn, Ge, and F contents increased during the evolution of the magmatic-hydrothermal fluid. Importantly, the increase in Fe, Ti, Co, Zn, and Cl and decrease in Mg, Ge, and F contents in hydrothermal biotite as the core of the deposit is approached (extending to ~ 2.5 km depth) may prove to be an important indicator of high-grade mineralized zones. Finally, this study shows that systematic spatial variations in hydrothermal biotite chemistry can potentially be used as a prospecting tool for porphyry deposits worldwide. |
doi_str_mv | 10.1007/s00126-021-01085-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2685816722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2685816722</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-e8ce3de5ae66f415a608954785a0c7b1930865b2718d9c97ec828bf7384b836f3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuAW6snaZum7nTwBooIug5pejpGOk1NUmV8AJ_bOhXcuTpw_ht8hBwyOGEAxWkAYFwkwFkCDGSefGyRGctSnjApxDaZAYxylpdyl-yF8AoAJctgRr4urIs2IjVu1btgo3Ud1YFqGr026KlraNMOtqb47tphkruarmyHXrf2U29eBruI_myMGR2QhjjUa6ojjS9IH4fWdUvaO9-_rP2aLobk3tEaN3PH9MlWGPfJTqPbgAe_d06ery6fFjfJ3cP17eL8LtFpxmOC0mBaY65RiCZjuRYgyzwrZK7BFBUrU5Air3jBZF2askAjuayaIpVZJVPRpHNyNPX23r0NGKJ6dYPvxknFhcwlEwXno4tPLuNdCB4b1Xu70n6tGKgf3mrirUbeasNbfYyhdAqF0dwt0f9V_5P6BmHWhL8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685816722</pqid></control><display><type>article</type><title>Biotite composition as a tracer of fluid evolution and mineralization center: a case study at the Qulong porphyry Cu-Mo deposit, Tibet</title><source>SpringerLink Journals</source><creator>Yu, Kelong ; Li, Guangming ; Zhao, Junxing ; Evans, Noreen J. ; Li, Jinxiang ; Jiang, Guangwu ; Zou, Xinyu ; Qin, Kezhang ; Guo, Hu</creator><creatorcontrib>Yu, Kelong ; Li, Guangming ; Zhao, Junxing ; Evans, Noreen J. ; Li, Jinxiang ; Jiang, Guangwu ; Zou, Xinyu ; Qin, Kezhang ; Guo, Hu</creatorcontrib><description>Porphyry Cu-Mo deposits are magmatic-hydrothermal deposits in which sulfide and oxide minerals precipitate from aqueous solutions. However, many questions remain about the composition and evolution of the magmatic-hydrothermal fluids responsible for mineralization. In response to this knowledge gap at the Qulong porphyry Cu-Mo deposit, Tibet, we present a comprehensive major and trace element dataset for biotite (including halogens) from Qulong to elucidate magmatic-hydrothermal fluid compositions and fluid evolution. Based on genesis and occurrence, biotite is divided into primary (igneous), re-equilibrated (igneous modified by hydrothermal fluids), and secondary (hydrothermal) types. All studied biotite grains are Mg-rich, and X
Mg
values (0.59–0.90) increased during fluid evolution, perhaps controlled by high oxygen fugacity (
f
O
2
) and sulfur fugacity (
f
S
2
) in the magmatic-hydrothermal fluids. The IV(F) and IV(Cl) values and halogen fugacity of biotite indicate that Cl-rich fluids were dominant during early magmatic-hydrothermal evolution, while later fluids were enriched in F. This is consistent with early Cu and late Mo enrichment in the Qulong deposit. We propose a fluid evolution model based on in situ major and trace element data and cross-cutting relationships between the intrusions and the veins. Iron, Ti, Co, Ni, Zn, and Cl contents decreased, while Mg, Si, Al, Sn, Ge, and F contents increased during the evolution of the magmatic-hydrothermal fluid. Importantly, the increase in Fe, Ti, Co, Zn, and Cl and decrease in Mg, Ge, and F contents in hydrothermal biotite as the core of the deposit is approached (extending to ~ 2.5 km depth) may prove to be an important indicator of high-grade mineralized zones. Finally, this study shows that systematic spatial variations in hydrothermal biotite chemistry can potentially be used as a prospecting tool for porphyry deposits worldwide.</description><identifier>ISSN: 0026-4598</identifier><identifier>EISSN: 1432-1866</identifier><identifier>DOI: 10.1007/s00126-021-01085-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aluminum ; Aqueous solutions ; Biotite ; Cobalt ; Composition ; Copper ; Cross cutting ; Deposits ; Earth and Environmental Science ; Earth Sciences ; Evolution ; Fluids ; Fugacity ; Geology ; Germanium ; Halogens ; Hydrothermal deposits ; Iron ; Magnesium ; Mineral Resources ; Mineralization ; Mineralogy ; Molybdenum ; Oxide minerals ; Porphyry copper ; Silicon ; Spatial variations ; Sulfur ; Sulphides ; Sulphur ; Tin ; Trace elements ; Tracers ; Zinc</subject><ispartof>Mineralium deposita, 2022-08, Vol.57 (6), p.1047-1069</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-e8ce3de5ae66f415a608954785a0c7b1930865b2718d9c97ec828bf7384b836f3</citedby><cites>FETCH-LOGICAL-a342t-e8ce3de5ae66f415a608954785a0c7b1930865b2718d9c97ec828bf7384b836f3</cites><orcidid>0000-0001-9930-1476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00126-021-01085-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00126-021-01085-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yu, Kelong</creatorcontrib><creatorcontrib>Li, Guangming</creatorcontrib><creatorcontrib>Zhao, Junxing</creatorcontrib><creatorcontrib>Evans, Noreen J.</creatorcontrib><creatorcontrib>Li, Jinxiang</creatorcontrib><creatorcontrib>Jiang, Guangwu</creatorcontrib><creatorcontrib>Zou, Xinyu</creatorcontrib><creatorcontrib>Qin, Kezhang</creatorcontrib><creatorcontrib>Guo, Hu</creatorcontrib><title>Biotite composition as a tracer of fluid evolution and mineralization center: a case study at the Qulong porphyry Cu-Mo deposit, Tibet</title><title>Mineralium deposita</title><addtitle>Miner Deposita</addtitle><description>Porphyry Cu-Mo deposits are magmatic-hydrothermal deposits in which sulfide and oxide minerals precipitate from aqueous solutions. However, many questions remain about the composition and evolution of the magmatic-hydrothermal fluids responsible for mineralization. In response to this knowledge gap at the Qulong porphyry Cu-Mo deposit, Tibet, we present a comprehensive major and trace element dataset for biotite (including halogens) from Qulong to elucidate magmatic-hydrothermal fluid compositions and fluid evolution. Based on genesis and occurrence, biotite is divided into primary (igneous), re-equilibrated (igneous modified by hydrothermal fluids), and secondary (hydrothermal) types. All studied biotite grains are Mg-rich, and X
Mg
values (0.59–0.90) increased during fluid evolution, perhaps controlled by high oxygen fugacity (
f
O
2
) and sulfur fugacity (
f
S
2
) in the magmatic-hydrothermal fluids. The IV(F) and IV(Cl) values and halogen fugacity of biotite indicate that Cl-rich fluids were dominant during early magmatic-hydrothermal evolution, while later fluids were enriched in F. This is consistent with early Cu and late Mo enrichment in the Qulong deposit. We propose a fluid evolution model based on in situ major and trace element data and cross-cutting relationships between the intrusions and the veins. Iron, Ti, Co, Ni, Zn, and Cl contents decreased, while Mg, Si, Al, Sn, Ge, and F contents increased during the evolution of the magmatic-hydrothermal fluid. Importantly, the increase in Fe, Ti, Co, Zn, and Cl and decrease in Mg, Ge, and F contents in hydrothermal biotite as the core of the deposit is approached (extending to ~ 2.5 km depth) may prove to be an important indicator of high-grade mineralized zones. Finally, this study shows that systematic spatial variations in hydrothermal biotite chemistry can potentially be used as a prospecting tool for porphyry deposits worldwide.</description><subject>Aluminum</subject><subject>Aqueous solutions</subject><subject>Biotite</subject><subject>Cobalt</subject><subject>Composition</subject><subject>Copper</subject><subject>Cross cutting</subject><subject>Deposits</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Evolution</subject><subject>Fluids</subject><subject>Fugacity</subject><subject>Geology</subject><subject>Germanium</subject><subject>Halogens</subject><subject>Hydrothermal deposits</subject><subject>Iron</subject><subject>Magnesium</subject><subject>Mineral Resources</subject><subject>Mineralization</subject><subject>Mineralogy</subject><subject>Molybdenum</subject><subject>Oxide minerals</subject><subject>Porphyry copper</subject><subject>Silicon</subject><subject>Spatial variations</subject><subject>Sulfur</subject><subject>Sulphides</subject><subject>Sulphur</subject><subject>Tin</subject><subject>Trace elements</subject><subject>Tracers</subject><subject>Zinc</subject><issn>0026-4598</issn><issn>1432-1866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMtKxDAUhoMoOI6-gKuAW6snaZum7nTwBooIug5pejpGOk1NUmV8AJ_bOhXcuTpw_ht8hBwyOGEAxWkAYFwkwFkCDGSefGyRGctSnjApxDaZAYxylpdyl-yF8AoAJctgRr4urIs2IjVu1btgo3Ud1YFqGr026KlraNMOtqb47tphkruarmyHXrf2U29eBruI_myMGR2QhjjUa6ojjS9IH4fWdUvaO9-_rP2aLobk3tEaN3PH9MlWGPfJTqPbgAe_d06ery6fFjfJ3cP17eL8LtFpxmOC0mBaY65RiCZjuRYgyzwrZK7BFBUrU5Air3jBZF2askAjuayaIpVZJVPRpHNyNPX23r0NGKJ6dYPvxknFhcwlEwXno4tPLuNdCB4b1Xu70n6tGKgf3mrirUbeasNbfYyhdAqF0dwt0f9V_5P6BmHWhL8</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Yu, Kelong</creator><creator>Li, Guangming</creator><creator>Zhao, Junxing</creator><creator>Evans, Noreen J.</creator><creator>Li, Jinxiang</creator><creator>Jiang, Guangwu</creator><creator>Zou, Xinyu</creator><creator>Qin, Kezhang</creator><creator>Guo, Hu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9930-1476</orcidid></search><sort><creationdate>20220801</creationdate><title>Biotite composition as a tracer of fluid evolution and mineralization center: a case study at the Qulong porphyry Cu-Mo deposit, Tibet</title><author>Yu, Kelong ; Li, Guangming ; Zhao, Junxing ; Evans, Noreen J. ; Li, Jinxiang ; Jiang, Guangwu ; Zou, Xinyu ; Qin, Kezhang ; Guo, Hu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-e8ce3de5ae66f415a608954785a0c7b1930865b2718d9c97ec828bf7384b836f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum</topic><topic>Aqueous solutions</topic><topic>Biotite</topic><topic>Cobalt</topic><topic>Composition</topic><topic>Copper</topic><topic>Cross cutting</topic><topic>Deposits</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Evolution</topic><topic>Fluids</topic><topic>Fugacity</topic><topic>Geology</topic><topic>Germanium</topic><topic>Halogens</topic><topic>Hydrothermal deposits</topic><topic>Iron</topic><topic>Magnesium</topic><topic>Mineral Resources</topic><topic>Mineralization</topic><topic>Mineralogy</topic><topic>Molybdenum</topic><topic>Oxide minerals</topic><topic>Porphyry copper</topic><topic>Silicon</topic><topic>Spatial variations</topic><topic>Sulfur</topic><topic>Sulphides</topic><topic>Sulphur</topic><topic>Tin</topic><topic>Trace elements</topic><topic>Tracers</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Kelong</creatorcontrib><creatorcontrib>Li, Guangming</creatorcontrib><creatorcontrib>Zhao, Junxing</creatorcontrib><creatorcontrib>Evans, Noreen J.</creatorcontrib><creatorcontrib>Li, Jinxiang</creatorcontrib><creatorcontrib>Jiang, Guangwu</creatorcontrib><creatorcontrib>Zou, Xinyu</creatorcontrib><creatorcontrib>Qin, Kezhang</creatorcontrib><creatorcontrib>Guo, Hu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mineralium deposita</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Kelong</au><au>Li, Guangming</au><au>Zhao, Junxing</au><au>Evans, Noreen J.</au><au>Li, Jinxiang</au><au>Jiang, Guangwu</au><au>Zou, Xinyu</au><au>Qin, Kezhang</au><au>Guo, Hu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biotite composition as a tracer of fluid evolution and mineralization center: a case study at the Qulong porphyry Cu-Mo deposit, Tibet</atitle><jtitle>Mineralium deposita</jtitle><stitle>Miner Deposita</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>57</volume><issue>6</issue><spage>1047</spage><epage>1069</epage><pages>1047-1069</pages><issn>0026-4598</issn><eissn>1432-1866</eissn><abstract>Porphyry Cu-Mo deposits are magmatic-hydrothermal deposits in which sulfide and oxide minerals precipitate from aqueous solutions. However, many questions remain about the composition and evolution of the magmatic-hydrothermal fluids responsible for mineralization. In response to this knowledge gap at the Qulong porphyry Cu-Mo deposit, Tibet, we present a comprehensive major and trace element dataset for biotite (including halogens) from Qulong to elucidate magmatic-hydrothermal fluid compositions and fluid evolution. Based on genesis and occurrence, biotite is divided into primary (igneous), re-equilibrated (igneous modified by hydrothermal fluids), and secondary (hydrothermal) types. All studied biotite grains are Mg-rich, and X
Mg
values (0.59–0.90) increased during fluid evolution, perhaps controlled by high oxygen fugacity (
f
O
2
) and sulfur fugacity (
f
S
2
) in the magmatic-hydrothermal fluids. The IV(F) and IV(Cl) values and halogen fugacity of biotite indicate that Cl-rich fluids were dominant during early magmatic-hydrothermal evolution, while later fluids were enriched in F. This is consistent with early Cu and late Mo enrichment in the Qulong deposit. We propose a fluid evolution model based on in situ major and trace element data and cross-cutting relationships between the intrusions and the veins. Iron, Ti, Co, Ni, Zn, and Cl contents decreased, while Mg, Si, Al, Sn, Ge, and F contents increased during the evolution of the magmatic-hydrothermal fluid. Importantly, the increase in Fe, Ti, Co, Zn, and Cl and decrease in Mg, Ge, and F contents in hydrothermal biotite as the core of the deposit is approached (extending to ~ 2.5 km depth) may prove to be an important indicator of high-grade mineralized zones. Finally, this study shows that systematic spatial variations in hydrothermal biotite chemistry can potentially be used as a prospecting tool for porphyry deposits worldwide.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00126-021-01085-w</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-9930-1476</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-4598 |
ispartof | Mineralium deposita, 2022-08, Vol.57 (6), p.1047-1069 |
issn | 0026-4598 1432-1866 |
language | eng |
recordid | cdi_proquest_journals_2685816722 |
source | SpringerLink Journals |
subjects | Aluminum Aqueous solutions Biotite Cobalt Composition Copper Cross cutting Deposits Earth and Environmental Science Earth Sciences Evolution Fluids Fugacity Geology Germanium Halogens Hydrothermal deposits Iron Magnesium Mineral Resources Mineralization Mineralogy Molybdenum Oxide minerals Porphyry copper Silicon Spatial variations Sulfur Sulphides Sulphur Tin Trace elements Tracers Zinc |
title | Biotite composition as a tracer of fluid evolution and mineralization center: a case study at the Qulong porphyry Cu-Mo deposit, Tibet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A57%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biotite%20composition%20as%20a%20tracer%20of%20fluid%20evolution%20and%20mineralization%20center:%20a%20case%20study%20at%20the%20Qulong%20porphyry%20Cu-Mo%20deposit,%20Tibet&rft.jtitle=Mineralium%20deposita&rft.au=Yu,%20Kelong&rft.date=2022-08-01&rft.volume=57&rft.issue=6&rft.spage=1047&rft.epage=1069&rft.pages=1047-1069&rft.issn=0026-4598&rft.eissn=1432-1866&rft_id=info:doi/10.1007/s00126-021-01085-w&rft_dat=%3Cproquest_cross%3E2685816722%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685816722&rft_id=info:pmid/&rfr_iscdi=true |