Biotite composition as a tracer of fluid evolution and mineralization center: a case study at the Qulong porphyry Cu-Mo deposit, Tibet

Porphyry Cu-Mo deposits are magmatic-hydrothermal deposits in which sulfide and oxide minerals precipitate from aqueous solutions. However, many questions remain about the composition and evolution of the magmatic-hydrothermal fluids responsible for mineralization. In response to this knowledge gap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mineralium deposita 2022-08, Vol.57 (6), p.1047-1069
Hauptverfasser: Yu, Kelong, Li, Guangming, Zhao, Junxing, Evans, Noreen J., Li, Jinxiang, Jiang, Guangwu, Zou, Xinyu, Qin, Kezhang, Guo, Hu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1069
container_issue 6
container_start_page 1047
container_title Mineralium deposita
container_volume 57
creator Yu, Kelong
Li, Guangming
Zhao, Junxing
Evans, Noreen J.
Li, Jinxiang
Jiang, Guangwu
Zou, Xinyu
Qin, Kezhang
Guo, Hu
description Porphyry Cu-Mo deposits are magmatic-hydrothermal deposits in which sulfide and oxide minerals precipitate from aqueous solutions. However, many questions remain about the composition and evolution of the magmatic-hydrothermal fluids responsible for mineralization. In response to this knowledge gap at the Qulong porphyry Cu-Mo deposit, Tibet, we present a comprehensive major and trace element dataset for biotite (including halogens) from Qulong to elucidate magmatic-hydrothermal fluid compositions and fluid evolution. Based on genesis and occurrence, biotite is divided into primary (igneous), re-equilibrated (igneous modified by hydrothermal fluids), and secondary (hydrothermal) types. All studied biotite grains are Mg-rich, and X Mg values (0.59–0.90) increased during fluid evolution, perhaps controlled by high oxygen fugacity ( f O 2 ) and sulfur fugacity ( f S 2 ) in the magmatic-hydrothermal fluids. The IV(F) and IV(Cl) values and halogen fugacity of biotite indicate that Cl-rich fluids were dominant during early magmatic-hydrothermal evolution, while later fluids were enriched in F. This is consistent with early Cu and late Mo enrichment in the Qulong deposit. We propose a fluid evolution model based on in situ major and trace element data and cross-cutting relationships between the intrusions and the veins. Iron, Ti, Co, Ni, Zn, and Cl contents decreased, while Mg, Si, Al, Sn, Ge, and F contents increased during the evolution of the magmatic-hydrothermal fluid. Importantly, the increase in Fe, Ti, Co, Zn, and Cl and decrease in Mg, Ge, and F contents in hydrothermal biotite as the core of the deposit is approached (extending to ~ 2.5 km depth) may prove to be an important indicator of high-grade mineralized zones. Finally, this study shows that systematic spatial variations in hydrothermal biotite chemistry can potentially be used as a prospecting tool for porphyry deposits worldwide.
doi_str_mv 10.1007/s00126-021-01085-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2685816722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2685816722</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-e8ce3de5ae66f415a608954785a0c7b1930865b2718d9c97ec828bf7384b836f3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuAW6snaZum7nTwBooIug5pejpGOk1NUmV8AJ_bOhXcuTpw_ht8hBwyOGEAxWkAYFwkwFkCDGSefGyRGctSnjApxDaZAYxylpdyl-yF8AoAJctgRr4urIs2IjVu1btgo3Ud1YFqGr026KlraNMOtqb47tphkruarmyHXrf2U29eBruI_myMGR2QhjjUa6ojjS9IH4fWdUvaO9-_rP2aLobk3tEaN3PH9MlWGPfJTqPbgAe_d06ery6fFjfJ3cP17eL8LtFpxmOC0mBaY65RiCZjuRYgyzwrZK7BFBUrU5Air3jBZF2askAjuayaIpVZJVPRpHNyNPX23r0NGKJ6dYPvxknFhcwlEwXno4tPLuNdCB4b1Xu70n6tGKgf3mrirUbeasNbfYyhdAqF0dwt0f9V_5P6BmHWhL8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685816722</pqid></control><display><type>article</type><title>Biotite composition as a tracer of fluid evolution and mineralization center: a case study at the Qulong porphyry Cu-Mo deposit, Tibet</title><source>SpringerLink Journals</source><creator>Yu, Kelong ; Li, Guangming ; Zhao, Junxing ; Evans, Noreen J. ; Li, Jinxiang ; Jiang, Guangwu ; Zou, Xinyu ; Qin, Kezhang ; Guo, Hu</creator><creatorcontrib>Yu, Kelong ; Li, Guangming ; Zhao, Junxing ; Evans, Noreen J. ; Li, Jinxiang ; Jiang, Guangwu ; Zou, Xinyu ; Qin, Kezhang ; Guo, Hu</creatorcontrib><description>Porphyry Cu-Mo deposits are magmatic-hydrothermal deposits in which sulfide and oxide minerals precipitate from aqueous solutions. However, many questions remain about the composition and evolution of the magmatic-hydrothermal fluids responsible for mineralization. In response to this knowledge gap at the Qulong porphyry Cu-Mo deposit, Tibet, we present a comprehensive major and trace element dataset for biotite (including halogens) from Qulong to elucidate magmatic-hydrothermal fluid compositions and fluid evolution. Based on genesis and occurrence, biotite is divided into primary (igneous), re-equilibrated (igneous modified by hydrothermal fluids), and secondary (hydrothermal) types. All studied biotite grains are Mg-rich, and X Mg values (0.59–0.90) increased during fluid evolution, perhaps controlled by high oxygen fugacity ( f O 2 ) and sulfur fugacity ( f S 2 ) in the magmatic-hydrothermal fluids. The IV(F) and IV(Cl) values and halogen fugacity of biotite indicate that Cl-rich fluids were dominant during early magmatic-hydrothermal evolution, while later fluids were enriched in F. This is consistent with early Cu and late Mo enrichment in the Qulong deposit. We propose a fluid evolution model based on in situ major and trace element data and cross-cutting relationships between the intrusions and the veins. Iron, Ti, Co, Ni, Zn, and Cl contents decreased, while Mg, Si, Al, Sn, Ge, and F contents increased during the evolution of the magmatic-hydrothermal fluid. Importantly, the increase in Fe, Ti, Co, Zn, and Cl and decrease in Mg, Ge, and F contents in hydrothermal biotite as the core of the deposit is approached (extending to ~ 2.5 km depth) may prove to be an important indicator of high-grade mineralized zones. Finally, this study shows that systematic spatial variations in hydrothermal biotite chemistry can potentially be used as a prospecting tool for porphyry deposits worldwide.</description><identifier>ISSN: 0026-4598</identifier><identifier>EISSN: 1432-1866</identifier><identifier>DOI: 10.1007/s00126-021-01085-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aluminum ; Aqueous solutions ; Biotite ; Cobalt ; Composition ; Copper ; Cross cutting ; Deposits ; Earth and Environmental Science ; Earth Sciences ; Evolution ; Fluids ; Fugacity ; Geology ; Germanium ; Halogens ; Hydrothermal deposits ; Iron ; Magnesium ; Mineral Resources ; Mineralization ; Mineralogy ; Molybdenum ; Oxide minerals ; Porphyry copper ; Silicon ; Spatial variations ; Sulfur ; Sulphides ; Sulphur ; Tin ; Trace elements ; Tracers ; Zinc</subject><ispartof>Mineralium deposita, 2022-08, Vol.57 (6), p.1047-1069</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-e8ce3de5ae66f415a608954785a0c7b1930865b2718d9c97ec828bf7384b836f3</citedby><cites>FETCH-LOGICAL-a342t-e8ce3de5ae66f415a608954785a0c7b1930865b2718d9c97ec828bf7384b836f3</cites><orcidid>0000-0001-9930-1476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00126-021-01085-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00126-021-01085-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yu, Kelong</creatorcontrib><creatorcontrib>Li, Guangming</creatorcontrib><creatorcontrib>Zhao, Junxing</creatorcontrib><creatorcontrib>Evans, Noreen J.</creatorcontrib><creatorcontrib>Li, Jinxiang</creatorcontrib><creatorcontrib>Jiang, Guangwu</creatorcontrib><creatorcontrib>Zou, Xinyu</creatorcontrib><creatorcontrib>Qin, Kezhang</creatorcontrib><creatorcontrib>Guo, Hu</creatorcontrib><title>Biotite composition as a tracer of fluid evolution and mineralization center: a case study at the Qulong porphyry Cu-Mo deposit, Tibet</title><title>Mineralium deposita</title><addtitle>Miner Deposita</addtitle><description>Porphyry Cu-Mo deposits are magmatic-hydrothermal deposits in which sulfide and oxide minerals precipitate from aqueous solutions. However, many questions remain about the composition and evolution of the magmatic-hydrothermal fluids responsible for mineralization. In response to this knowledge gap at the Qulong porphyry Cu-Mo deposit, Tibet, we present a comprehensive major and trace element dataset for biotite (including halogens) from Qulong to elucidate magmatic-hydrothermal fluid compositions and fluid evolution. Based on genesis and occurrence, biotite is divided into primary (igneous), re-equilibrated (igneous modified by hydrothermal fluids), and secondary (hydrothermal) types. All studied biotite grains are Mg-rich, and X Mg values (0.59–0.90) increased during fluid evolution, perhaps controlled by high oxygen fugacity ( f O 2 ) and sulfur fugacity ( f S 2 ) in the magmatic-hydrothermal fluids. The IV(F) and IV(Cl) values and halogen fugacity of biotite indicate that Cl-rich fluids were dominant during early magmatic-hydrothermal evolution, while later fluids were enriched in F. This is consistent with early Cu and late Mo enrichment in the Qulong deposit. We propose a fluid evolution model based on in situ major and trace element data and cross-cutting relationships between the intrusions and the veins. Iron, Ti, Co, Ni, Zn, and Cl contents decreased, while Mg, Si, Al, Sn, Ge, and F contents increased during the evolution of the magmatic-hydrothermal fluid. Importantly, the increase in Fe, Ti, Co, Zn, and Cl and decrease in Mg, Ge, and F contents in hydrothermal biotite as the core of the deposit is approached (extending to ~ 2.5 km depth) may prove to be an important indicator of high-grade mineralized zones. Finally, this study shows that systematic spatial variations in hydrothermal biotite chemistry can potentially be used as a prospecting tool for porphyry deposits worldwide.</description><subject>Aluminum</subject><subject>Aqueous solutions</subject><subject>Biotite</subject><subject>Cobalt</subject><subject>Composition</subject><subject>Copper</subject><subject>Cross cutting</subject><subject>Deposits</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Evolution</subject><subject>Fluids</subject><subject>Fugacity</subject><subject>Geology</subject><subject>Germanium</subject><subject>Halogens</subject><subject>Hydrothermal deposits</subject><subject>Iron</subject><subject>Magnesium</subject><subject>Mineral Resources</subject><subject>Mineralization</subject><subject>Mineralogy</subject><subject>Molybdenum</subject><subject>Oxide minerals</subject><subject>Porphyry copper</subject><subject>Silicon</subject><subject>Spatial variations</subject><subject>Sulfur</subject><subject>Sulphides</subject><subject>Sulphur</subject><subject>Tin</subject><subject>Trace elements</subject><subject>Tracers</subject><subject>Zinc</subject><issn>0026-4598</issn><issn>1432-1866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMtKxDAUhoMoOI6-gKuAW6snaZum7nTwBooIug5pejpGOk1NUmV8AJ_bOhXcuTpw_ht8hBwyOGEAxWkAYFwkwFkCDGSefGyRGctSnjApxDaZAYxylpdyl-yF8AoAJctgRr4urIs2IjVu1btgo3Ud1YFqGr026KlraNMOtqb47tphkruarmyHXrf2U29eBruI_myMGR2QhjjUa6ojjS9IH4fWdUvaO9-_rP2aLobk3tEaN3PH9MlWGPfJTqPbgAe_d06ery6fFjfJ3cP17eL8LtFpxmOC0mBaY65RiCZjuRYgyzwrZK7BFBUrU5Air3jBZF2askAjuayaIpVZJVPRpHNyNPX23r0NGKJ6dYPvxknFhcwlEwXno4tPLuNdCB4b1Xu70n6tGKgf3mrirUbeasNbfYyhdAqF0dwt0f9V_5P6BmHWhL8</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Yu, Kelong</creator><creator>Li, Guangming</creator><creator>Zhao, Junxing</creator><creator>Evans, Noreen J.</creator><creator>Li, Jinxiang</creator><creator>Jiang, Guangwu</creator><creator>Zou, Xinyu</creator><creator>Qin, Kezhang</creator><creator>Guo, Hu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9930-1476</orcidid></search><sort><creationdate>20220801</creationdate><title>Biotite composition as a tracer of fluid evolution and mineralization center: a case study at the Qulong porphyry Cu-Mo deposit, Tibet</title><author>Yu, Kelong ; Li, Guangming ; Zhao, Junxing ; Evans, Noreen J. ; Li, Jinxiang ; Jiang, Guangwu ; Zou, Xinyu ; Qin, Kezhang ; Guo, Hu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-e8ce3de5ae66f415a608954785a0c7b1930865b2718d9c97ec828bf7384b836f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum</topic><topic>Aqueous solutions</topic><topic>Biotite</topic><topic>Cobalt</topic><topic>Composition</topic><topic>Copper</topic><topic>Cross cutting</topic><topic>Deposits</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Evolution</topic><topic>Fluids</topic><topic>Fugacity</topic><topic>Geology</topic><topic>Germanium</topic><topic>Halogens</topic><topic>Hydrothermal deposits</topic><topic>Iron</topic><topic>Magnesium</topic><topic>Mineral Resources</topic><topic>Mineralization</topic><topic>Mineralogy</topic><topic>Molybdenum</topic><topic>Oxide minerals</topic><topic>Porphyry copper</topic><topic>Silicon</topic><topic>Spatial variations</topic><topic>Sulfur</topic><topic>Sulphides</topic><topic>Sulphur</topic><topic>Tin</topic><topic>Trace elements</topic><topic>Tracers</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Kelong</creatorcontrib><creatorcontrib>Li, Guangming</creatorcontrib><creatorcontrib>Zhao, Junxing</creatorcontrib><creatorcontrib>Evans, Noreen J.</creatorcontrib><creatorcontrib>Li, Jinxiang</creatorcontrib><creatorcontrib>Jiang, Guangwu</creatorcontrib><creatorcontrib>Zou, Xinyu</creatorcontrib><creatorcontrib>Qin, Kezhang</creatorcontrib><creatorcontrib>Guo, Hu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mineralium deposita</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Kelong</au><au>Li, Guangming</au><au>Zhao, Junxing</au><au>Evans, Noreen J.</au><au>Li, Jinxiang</au><au>Jiang, Guangwu</au><au>Zou, Xinyu</au><au>Qin, Kezhang</au><au>Guo, Hu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biotite composition as a tracer of fluid evolution and mineralization center: a case study at the Qulong porphyry Cu-Mo deposit, Tibet</atitle><jtitle>Mineralium deposita</jtitle><stitle>Miner Deposita</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>57</volume><issue>6</issue><spage>1047</spage><epage>1069</epage><pages>1047-1069</pages><issn>0026-4598</issn><eissn>1432-1866</eissn><abstract>Porphyry Cu-Mo deposits are magmatic-hydrothermal deposits in which sulfide and oxide minerals precipitate from aqueous solutions. However, many questions remain about the composition and evolution of the magmatic-hydrothermal fluids responsible for mineralization. In response to this knowledge gap at the Qulong porphyry Cu-Mo deposit, Tibet, we present a comprehensive major and trace element dataset for biotite (including halogens) from Qulong to elucidate magmatic-hydrothermal fluid compositions and fluid evolution. Based on genesis and occurrence, biotite is divided into primary (igneous), re-equilibrated (igneous modified by hydrothermal fluids), and secondary (hydrothermal) types. All studied biotite grains are Mg-rich, and X Mg values (0.59–0.90) increased during fluid evolution, perhaps controlled by high oxygen fugacity ( f O 2 ) and sulfur fugacity ( f S 2 ) in the magmatic-hydrothermal fluids. The IV(F) and IV(Cl) values and halogen fugacity of biotite indicate that Cl-rich fluids were dominant during early magmatic-hydrothermal evolution, while later fluids were enriched in F. This is consistent with early Cu and late Mo enrichment in the Qulong deposit. We propose a fluid evolution model based on in situ major and trace element data and cross-cutting relationships between the intrusions and the veins. Iron, Ti, Co, Ni, Zn, and Cl contents decreased, while Mg, Si, Al, Sn, Ge, and F contents increased during the evolution of the magmatic-hydrothermal fluid. Importantly, the increase in Fe, Ti, Co, Zn, and Cl and decrease in Mg, Ge, and F contents in hydrothermal biotite as the core of the deposit is approached (extending to ~ 2.5 km depth) may prove to be an important indicator of high-grade mineralized zones. Finally, this study shows that systematic spatial variations in hydrothermal biotite chemistry can potentially be used as a prospecting tool for porphyry deposits worldwide.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00126-021-01085-w</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-9930-1476</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0026-4598
ispartof Mineralium deposita, 2022-08, Vol.57 (6), p.1047-1069
issn 0026-4598
1432-1866
language eng
recordid cdi_proquest_journals_2685816722
source SpringerLink Journals
subjects Aluminum
Aqueous solutions
Biotite
Cobalt
Composition
Copper
Cross cutting
Deposits
Earth and Environmental Science
Earth Sciences
Evolution
Fluids
Fugacity
Geology
Germanium
Halogens
Hydrothermal deposits
Iron
Magnesium
Mineral Resources
Mineralization
Mineralogy
Molybdenum
Oxide minerals
Porphyry copper
Silicon
Spatial variations
Sulfur
Sulphides
Sulphur
Tin
Trace elements
Tracers
Zinc
title Biotite composition as a tracer of fluid evolution and mineralization center: a case study at the Qulong porphyry Cu-Mo deposit, Tibet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A57%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biotite%20composition%20as%20a%20tracer%20of%20fluid%20evolution%20and%20mineralization%20center:%20a%20case%20study%20at%20the%20Qulong%20porphyry%20Cu-Mo%20deposit,%20Tibet&rft.jtitle=Mineralium%20deposita&rft.au=Yu,%20Kelong&rft.date=2022-08-01&rft.volume=57&rft.issue=6&rft.spage=1047&rft.epage=1069&rft.pages=1047-1069&rft.issn=0026-4598&rft.eissn=1432-1866&rft_id=info:doi/10.1007/s00126-021-01085-w&rft_dat=%3Cproquest_cross%3E2685816722%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685816722&rft_id=info:pmid/&rfr_iscdi=true