1313-P: Short-Chain Fatty Acids Decrease Food Intake through Free Fatty Acid Receptors in the Brain

The influence of gut bacteria on host energy homeostasis is increasingly recognized, but mechanistic links are lacking. The gut microbiota digests and ferments nutrients, which result in short-chain fatty acids (SCFAs) . The body senses these nutrients in large part through free fatty acid receptors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes (New York, N.Y.) N.Y.), 2022-06, Vol.71 (Supplement_1)
Hauptverfasser: LUO, PEI, XU, PINGWEN, FENG, BING, YE, HUI, PATEL, NIRALI, LAYDEN, BRIAN T., HE, YANLIN, KOTA, MAYA, DIXIT, DEVIN, ANTONY, NIMISHA, CARRILLO-SÁENZ, LESLIE, TORRES IRIZARRY, VALERIA C., IBRAHIMI, LUCAS, SCHAUL, SARAH
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue Supplement_1
container_start_page
container_title Diabetes (New York, N.Y.)
container_volume 71
creator LUO, PEI
XU, PINGWEN
FENG, BING
YE, HUI
PATEL, NIRALI
LAYDEN, BRIAN T.
HE, YANLIN
KOTA, MAYA
DIXIT, DEVIN
ANTONY, NIMISHA
CARRILLO-SÁENZ, LESLIE
TORRES IRIZARRY, VALERIA C.
IBRAHIMI, LUCAS
SCHAUL, SARAH
description The influence of gut bacteria on host energy homeostasis is increasingly recognized, but mechanistic links are lacking. The gut microbiota digests and ferments nutrients, which result in short-chain fatty acids (SCFAs) . The body senses these nutrients in large part through free fatty acid receptors 2 (FFA2) and 3 (FFA3) . Accumulating evidence indicates that the gut microbiota/SCFAs interact with the central nervous system (CNS) to regulate brain metabolic function. Consistently, we found that a single acute intracerebroventricular (ICV) injection of acetate (ACE) , propionate (PRO) , or butyrate (BUT) dose-dependently inhibited food intake in an FFA2/3-dependent manner. The reduced food intake induced by ACE, PRO, or BUT was attributed to decreased meal size or increased intermeal interval. These regulatory effects on meal patterns were blunted in FFA2 and FFA3 double-receptor knockout mice, suggesting a mediating role of brain FFA2/3. Interestingly, RNAscope analysis showed that FFA3 but not FFA2 highly expressed in the cerebellar granule neurons. Using brain slice patch-clamp, we consistently showed that PRO or FFA3-selective agonists inhibited these granule neurons. Notably, the hyperpolarization effects of PRO on cerebellar granule neurons were blocked by pertussis toxin (PTX) , a G-protein coupled receptor subunit Gi/o blocker, further supporting an FFA3-Gi/o-mediated inhibition on granule neurons. These results suggest a model that SCFAs inhibit food intake through FFA3 expressed by the cerebellar granule neurons. Key words: SCFA; Brain; FFA3
doi_str_mv 10.2337/db22-1313-P
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2685591675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2685591675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1065-f6c78b46b2b6ef56149680b2708d63819de1edd0960b1e176f5fcb34f6a9fbc43</originalsourceid><addsrcrecordid>eNpNkE1LAzEQQIMoWKsn_0DAo6wmm91k461WVwsFix_gLeRj4rZqU5P00H_vlvUgc5jDPN7AQ-ickquSMXHtTFkWlFFWLA7QiEomC1aK90M0IoT2FyHFMTpJaUUI4f2MkB3oG_zShZiLaaeXa9zqnHd4Ypcu4TuwEXQC3Ibg8Gyd9Sfg3MWw_ehwGwH-0fgZLGxyiAn3ltwBvo297xQdef2V4Oxvj9Fbe_86fSzmTw-z6WReWEp4XXhuRWMqbkrDwdecVpI3xJSCNI6zhkoHFJwjkhNDgQrua28NqzzX0htbsTG6GLybGH62kLJahW1c9y9VyZu6lpSLuqcuB8rGkFIErzZx-a3jTlGi9hXVvqLad1EL9gs832LD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685591675</pqid></control><display><type>article</type><title>1313-P: Short-Chain Fatty Acids Decrease Food Intake through Free Fatty Acid Receptors in the Brain</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>LUO, PEI ; XU, PINGWEN ; FENG, BING ; YE, HUI ; PATEL, NIRALI ; LAYDEN, BRIAN T. ; HE, YANLIN ; KOTA, MAYA ; DIXIT, DEVIN ; ANTONY, NIMISHA ; CARRILLO-SÁENZ, LESLIE ; TORRES IRIZARRY, VALERIA C. ; IBRAHIMI, LUCAS ; SCHAUL, SARAH</creator><creatorcontrib>LUO, PEI ; XU, PINGWEN ; FENG, BING ; YE, HUI ; PATEL, NIRALI ; LAYDEN, BRIAN T. ; HE, YANLIN ; KOTA, MAYA ; DIXIT, DEVIN ; ANTONY, NIMISHA ; CARRILLO-SÁENZ, LESLIE ; TORRES IRIZARRY, VALERIA C. ; IBRAHIMI, LUCAS ; SCHAUL, SARAH</creatorcontrib><description>The influence of gut bacteria on host energy homeostasis is increasingly recognized, but mechanistic links are lacking. The gut microbiota digests and ferments nutrients, which result in short-chain fatty acids (SCFAs) . The body senses these nutrients in large part through free fatty acid receptors 2 (FFA2) and 3 (FFA3) . Accumulating evidence indicates that the gut microbiota/SCFAs interact with the central nervous system (CNS) to regulate brain metabolic function. Consistently, we found that a single acute intracerebroventricular (ICV) injection of acetate (ACE) , propionate (PRO) , or butyrate (BUT) dose-dependently inhibited food intake in an FFA2/3-dependent manner. The reduced food intake induced by ACE, PRO, or BUT was attributed to decreased meal size or increased intermeal interval. These regulatory effects on meal patterns were blunted in FFA2 and FFA3 double-receptor knockout mice, suggesting a mediating role of brain FFA2/3. Interestingly, RNAscope analysis showed that FFA3 but not FFA2 highly expressed in the cerebellar granule neurons. Using brain slice patch-clamp, we consistently showed that PRO or FFA3-selective agonists inhibited these granule neurons. Notably, the hyperpolarization effects of PRO on cerebellar granule neurons were blocked by pertussis toxin (PTX) , a G-protein coupled receptor subunit Gi/o blocker, further supporting an FFA3-Gi/o-mediated inhibition on granule neurons. These results suggest a model that SCFAs inhibit food intake through FFA3 expressed by the cerebellar granule neurons. Key words: SCFA; Brain; FFA3</description><identifier>ISSN: 0012-1797</identifier><identifier>EISSN: 1939-327X</identifier><identifier>DOI: 10.2337/db22-1313-P</identifier><language>eng</language><publisher>New York: American Diabetes Association</publisher><subject>Acetic acid ; Brain slice preparation ; Central nervous system ; Cerebellum ; Diabetes ; Energy balance ; Fatty acids ; Food ; Food chains ; Food intake ; G protein-coupled receptors ; Granule cells ; Homeostasis ; Hyperpolarization ; Intestinal microflora ; Microbiota ; Neurons ; Nutrients ; Pertussis ; Pertussis toxin ; Propionic acid</subject><ispartof>Diabetes (New York, N.Y.), 2022-06, Vol.71 (Supplement_1)</ispartof><rights>Copyright American Diabetes Association Jun 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1065-f6c78b46b2b6ef56149680b2708d63819de1edd0960b1e176f5fcb34f6a9fbc43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>LUO, PEI</creatorcontrib><creatorcontrib>XU, PINGWEN</creatorcontrib><creatorcontrib>FENG, BING</creatorcontrib><creatorcontrib>YE, HUI</creatorcontrib><creatorcontrib>PATEL, NIRALI</creatorcontrib><creatorcontrib>LAYDEN, BRIAN T.</creatorcontrib><creatorcontrib>HE, YANLIN</creatorcontrib><creatorcontrib>KOTA, MAYA</creatorcontrib><creatorcontrib>DIXIT, DEVIN</creatorcontrib><creatorcontrib>ANTONY, NIMISHA</creatorcontrib><creatorcontrib>CARRILLO-SÁENZ, LESLIE</creatorcontrib><creatorcontrib>TORRES IRIZARRY, VALERIA C.</creatorcontrib><creatorcontrib>IBRAHIMI, LUCAS</creatorcontrib><creatorcontrib>SCHAUL, SARAH</creatorcontrib><title>1313-P: Short-Chain Fatty Acids Decrease Food Intake through Free Fatty Acid Receptors in the Brain</title><title>Diabetes (New York, N.Y.)</title><description>The influence of gut bacteria on host energy homeostasis is increasingly recognized, but mechanistic links are lacking. The gut microbiota digests and ferments nutrients, which result in short-chain fatty acids (SCFAs) . The body senses these nutrients in large part through free fatty acid receptors 2 (FFA2) and 3 (FFA3) . Accumulating evidence indicates that the gut microbiota/SCFAs interact with the central nervous system (CNS) to regulate brain metabolic function. Consistently, we found that a single acute intracerebroventricular (ICV) injection of acetate (ACE) , propionate (PRO) , or butyrate (BUT) dose-dependently inhibited food intake in an FFA2/3-dependent manner. The reduced food intake induced by ACE, PRO, or BUT was attributed to decreased meal size or increased intermeal interval. These regulatory effects on meal patterns were blunted in FFA2 and FFA3 double-receptor knockout mice, suggesting a mediating role of brain FFA2/3. Interestingly, RNAscope analysis showed that FFA3 but not FFA2 highly expressed in the cerebellar granule neurons. Using brain slice patch-clamp, we consistently showed that PRO or FFA3-selective agonists inhibited these granule neurons. Notably, the hyperpolarization effects of PRO on cerebellar granule neurons were blocked by pertussis toxin (PTX) , a G-protein coupled receptor subunit Gi/o blocker, further supporting an FFA3-Gi/o-mediated inhibition on granule neurons. These results suggest a model that SCFAs inhibit food intake through FFA3 expressed by the cerebellar granule neurons. Key words: SCFA; Brain; FFA3</description><subject>Acetic acid</subject><subject>Brain slice preparation</subject><subject>Central nervous system</subject><subject>Cerebellum</subject><subject>Diabetes</subject><subject>Energy balance</subject><subject>Fatty acids</subject><subject>Food</subject><subject>Food chains</subject><subject>Food intake</subject><subject>G protein-coupled receptors</subject><subject>Granule cells</subject><subject>Homeostasis</subject><subject>Hyperpolarization</subject><subject>Intestinal microflora</subject><subject>Microbiota</subject><subject>Neurons</subject><subject>Nutrients</subject><subject>Pertussis</subject><subject>Pertussis toxin</subject><subject>Propionic acid</subject><issn>0012-1797</issn><issn>1939-327X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQQIMoWKsn_0DAo6wmm91k461WVwsFix_gLeRj4rZqU5P00H_vlvUgc5jDPN7AQ-ickquSMXHtTFkWlFFWLA7QiEomC1aK90M0IoT2FyHFMTpJaUUI4f2MkB3oG_zShZiLaaeXa9zqnHd4Ypcu4TuwEXQC3Ibg8Gyd9Sfg3MWw_ehwGwH-0fgZLGxyiAn3ltwBvo297xQdef2V4Oxvj9Fbe_86fSzmTw-z6WReWEp4XXhuRWMqbkrDwdecVpI3xJSCNI6zhkoHFJwjkhNDgQrua28NqzzX0htbsTG6GLybGH62kLJahW1c9y9VyZu6lpSLuqcuB8rGkFIErzZx-a3jTlGi9hXVvqLad1EL9gs832LD</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>LUO, PEI</creator><creator>XU, PINGWEN</creator><creator>FENG, BING</creator><creator>YE, HUI</creator><creator>PATEL, NIRALI</creator><creator>LAYDEN, BRIAN T.</creator><creator>HE, YANLIN</creator><creator>KOTA, MAYA</creator><creator>DIXIT, DEVIN</creator><creator>ANTONY, NIMISHA</creator><creator>CARRILLO-SÁENZ, LESLIE</creator><creator>TORRES IRIZARRY, VALERIA C.</creator><creator>IBRAHIMI, LUCAS</creator><creator>SCHAUL, SARAH</creator><general>American Diabetes Association</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope></search><sort><creationdate>20220601</creationdate><title>1313-P: Short-Chain Fatty Acids Decrease Food Intake through Free Fatty Acid Receptors in the Brain</title><author>LUO, PEI ; XU, PINGWEN ; FENG, BING ; YE, HUI ; PATEL, NIRALI ; LAYDEN, BRIAN T. ; HE, YANLIN ; KOTA, MAYA ; DIXIT, DEVIN ; ANTONY, NIMISHA ; CARRILLO-SÁENZ, LESLIE ; TORRES IRIZARRY, VALERIA C. ; IBRAHIMI, LUCAS ; SCHAUL, SARAH</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1065-f6c78b46b2b6ef56149680b2708d63819de1edd0960b1e176f5fcb34f6a9fbc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acetic acid</topic><topic>Brain slice preparation</topic><topic>Central nervous system</topic><topic>Cerebellum</topic><topic>Diabetes</topic><topic>Energy balance</topic><topic>Fatty acids</topic><topic>Food</topic><topic>Food chains</topic><topic>Food intake</topic><topic>G protein-coupled receptors</topic><topic>Granule cells</topic><topic>Homeostasis</topic><topic>Hyperpolarization</topic><topic>Intestinal microflora</topic><topic>Microbiota</topic><topic>Neurons</topic><topic>Nutrients</topic><topic>Pertussis</topic><topic>Pertussis toxin</topic><topic>Propionic acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LUO, PEI</creatorcontrib><creatorcontrib>XU, PINGWEN</creatorcontrib><creatorcontrib>FENG, BING</creatorcontrib><creatorcontrib>YE, HUI</creatorcontrib><creatorcontrib>PATEL, NIRALI</creatorcontrib><creatorcontrib>LAYDEN, BRIAN T.</creatorcontrib><creatorcontrib>HE, YANLIN</creatorcontrib><creatorcontrib>KOTA, MAYA</creatorcontrib><creatorcontrib>DIXIT, DEVIN</creatorcontrib><creatorcontrib>ANTONY, NIMISHA</creatorcontrib><creatorcontrib>CARRILLO-SÁENZ, LESLIE</creatorcontrib><creatorcontrib>TORRES IRIZARRY, VALERIA C.</creatorcontrib><creatorcontrib>IBRAHIMI, LUCAS</creatorcontrib><creatorcontrib>SCHAUL, SARAH</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><jtitle>Diabetes (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LUO, PEI</au><au>XU, PINGWEN</au><au>FENG, BING</au><au>YE, HUI</au><au>PATEL, NIRALI</au><au>LAYDEN, BRIAN T.</au><au>HE, YANLIN</au><au>KOTA, MAYA</au><au>DIXIT, DEVIN</au><au>ANTONY, NIMISHA</au><au>CARRILLO-SÁENZ, LESLIE</au><au>TORRES IRIZARRY, VALERIA C.</au><au>IBRAHIMI, LUCAS</au><au>SCHAUL, SARAH</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>1313-P: Short-Chain Fatty Acids Decrease Food Intake through Free Fatty Acid Receptors in the Brain</atitle><jtitle>Diabetes (New York, N.Y.)</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>71</volume><issue>Supplement_1</issue><issn>0012-1797</issn><eissn>1939-327X</eissn><abstract>The influence of gut bacteria on host energy homeostasis is increasingly recognized, but mechanistic links are lacking. The gut microbiota digests and ferments nutrients, which result in short-chain fatty acids (SCFAs) . The body senses these nutrients in large part through free fatty acid receptors 2 (FFA2) and 3 (FFA3) . Accumulating evidence indicates that the gut microbiota/SCFAs interact with the central nervous system (CNS) to regulate brain metabolic function. Consistently, we found that a single acute intracerebroventricular (ICV) injection of acetate (ACE) , propionate (PRO) , or butyrate (BUT) dose-dependently inhibited food intake in an FFA2/3-dependent manner. The reduced food intake induced by ACE, PRO, or BUT was attributed to decreased meal size or increased intermeal interval. These regulatory effects on meal patterns were blunted in FFA2 and FFA3 double-receptor knockout mice, suggesting a mediating role of brain FFA2/3. Interestingly, RNAscope analysis showed that FFA3 but not FFA2 highly expressed in the cerebellar granule neurons. Using brain slice patch-clamp, we consistently showed that PRO or FFA3-selective agonists inhibited these granule neurons. Notably, the hyperpolarization effects of PRO on cerebellar granule neurons were blocked by pertussis toxin (PTX) , a G-protein coupled receptor subunit Gi/o blocker, further supporting an FFA3-Gi/o-mediated inhibition on granule neurons. These results suggest a model that SCFAs inhibit food intake through FFA3 expressed by the cerebellar granule neurons. Key words: SCFA; Brain; FFA3</abstract><cop>New York</cop><pub>American Diabetes Association</pub><doi>10.2337/db22-1313-P</doi></addata></record>
fulltext fulltext
identifier ISSN: 0012-1797
ispartof Diabetes (New York, N.Y.), 2022-06, Vol.71 (Supplement_1)
issn 0012-1797
1939-327X
language eng
recordid cdi_proquest_journals_2685591675
source EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Acetic acid
Brain slice preparation
Central nervous system
Cerebellum
Diabetes
Energy balance
Fatty acids
Food
Food chains
Food intake
G protein-coupled receptors
Granule cells
Homeostasis
Hyperpolarization
Intestinal microflora
Microbiota
Neurons
Nutrients
Pertussis
Pertussis toxin
Propionic acid
title 1313-P: Short-Chain Fatty Acids Decrease Food Intake through Free Fatty Acid Receptors in the Brain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A10%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=1313-P:%20Short-Chain%20Fatty%20Acids%20Decrease%20Food%20Intake%20through%20Free%20Fatty%20Acid%20Receptors%20in%20the%20Brain&rft.jtitle=Diabetes%20(New%20York,%20N.Y.)&rft.au=LUO,%20PEI&rft.date=2022-06-01&rft.volume=71&rft.issue=Supplement_1&rft.issn=0012-1797&rft.eissn=1939-327X&rft_id=info:doi/10.2337/db22-1313-P&rft_dat=%3Cproquest_cross%3E2685591675%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685591675&rft_id=info:pmid/&rfr_iscdi=true