1313-P: Short-Chain Fatty Acids Decrease Food Intake through Free Fatty Acid Receptors in the Brain
The influence of gut bacteria on host energy homeostasis is increasingly recognized, but mechanistic links are lacking. The gut microbiota digests and ferments nutrients, which result in short-chain fatty acids (SCFAs) . The body senses these nutrients in large part through free fatty acid receptors...
Gespeichert in:
Veröffentlicht in: | Diabetes (New York, N.Y.) N.Y.), 2022-06, Vol.71 (Supplement_1) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | Supplement_1 |
container_start_page | |
container_title | Diabetes (New York, N.Y.) |
container_volume | 71 |
creator | LUO, PEI XU, PINGWEN FENG, BING YE, HUI PATEL, NIRALI LAYDEN, BRIAN T. HE, YANLIN KOTA, MAYA DIXIT, DEVIN ANTONY, NIMISHA CARRILLO-SÁENZ, LESLIE TORRES IRIZARRY, VALERIA C. IBRAHIMI, LUCAS SCHAUL, SARAH |
description | The influence of gut bacteria on host energy homeostasis is increasingly recognized, but mechanistic links are lacking. The gut microbiota digests and ferments nutrients, which result in short-chain fatty acids (SCFAs) . The body senses these nutrients in large part through free fatty acid receptors 2 (FFA2) and 3 (FFA3) . Accumulating evidence indicates that the gut microbiota/SCFAs interact with the central nervous system (CNS) to regulate brain metabolic function. Consistently, we found that a single acute intracerebroventricular (ICV) injection of acetate (ACE) , propionate (PRO) , or butyrate (BUT) dose-dependently inhibited food intake in an FFA2/3-dependent manner. The reduced food intake induced by ACE, PRO, or BUT was attributed to decreased meal size or increased intermeal interval. These regulatory effects on meal patterns were blunted in FFA2 and FFA3 double-receptor knockout mice, suggesting a mediating role of brain FFA2/3. Interestingly, RNAscope analysis showed that FFA3 but not FFA2 highly expressed in the cerebellar granule neurons. Using brain slice patch-clamp, we consistently showed that PRO or FFA3-selective agonists inhibited these granule neurons. Notably, the hyperpolarization effects of PRO on cerebellar granule neurons were blocked by pertussis toxin (PTX) , a G-protein coupled receptor subunit Gi/o blocker, further supporting an FFA3-Gi/o-mediated inhibition on granule neurons. These results suggest a model that SCFAs inhibit food intake through FFA3 expressed by the cerebellar granule neurons.
Key words: SCFA; Brain; FFA3 |
doi_str_mv | 10.2337/db22-1313-P |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2685591675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2685591675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1065-f6c78b46b2b6ef56149680b2708d63819de1edd0960b1e176f5fcb34f6a9fbc43</originalsourceid><addsrcrecordid>eNpNkE1LAzEQQIMoWKsn_0DAo6wmm91k461WVwsFix_gLeRj4rZqU5P00H_vlvUgc5jDPN7AQ-ickquSMXHtTFkWlFFWLA7QiEomC1aK90M0IoT2FyHFMTpJaUUI4f2MkB3oG_zShZiLaaeXa9zqnHd4Ypcu4TuwEXQC3Ibg8Gyd9Sfg3MWw_ehwGwH-0fgZLGxyiAn3ltwBvo297xQdef2V4Oxvj9Fbe_86fSzmTw-z6WReWEp4XXhuRWMqbkrDwdecVpI3xJSCNI6zhkoHFJwjkhNDgQrua28NqzzX0htbsTG6GLybGH62kLJahW1c9y9VyZu6lpSLuqcuB8rGkFIErzZx-a3jTlGi9hXVvqLad1EL9gs832LD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685591675</pqid></control><display><type>article</type><title>1313-P: Short-Chain Fatty Acids Decrease Food Intake through Free Fatty Acid Receptors in the Brain</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>LUO, PEI ; XU, PINGWEN ; FENG, BING ; YE, HUI ; PATEL, NIRALI ; LAYDEN, BRIAN T. ; HE, YANLIN ; KOTA, MAYA ; DIXIT, DEVIN ; ANTONY, NIMISHA ; CARRILLO-SÁENZ, LESLIE ; TORRES IRIZARRY, VALERIA C. ; IBRAHIMI, LUCAS ; SCHAUL, SARAH</creator><creatorcontrib>LUO, PEI ; XU, PINGWEN ; FENG, BING ; YE, HUI ; PATEL, NIRALI ; LAYDEN, BRIAN T. ; HE, YANLIN ; KOTA, MAYA ; DIXIT, DEVIN ; ANTONY, NIMISHA ; CARRILLO-SÁENZ, LESLIE ; TORRES IRIZARRY, VALERIA C. ; IBRAHIMI, LUCAS ; SCHAUL, SARAH</creatorcontrib><description>The influence of gut bacteria on host energy homeostasis is increasingly recognized, but mechanistic links are lacking. The gut microbiota digests and ferments nutrients, which result in short-chain fatty acids (SCFAs) . The body senses these nutrients in large part through free fatty acid receptors 2 (FFA2) and 3 (FFA3) . Accumulating evidence indicates that the gut microbiota/SCFAs interact with the central nervous system (CNS) to regulate brain metabolic function. Consistently, we found that a single acute intracerebroventricular (ICV) injection of acetate (ACE) , propionate (PRO) , or butyrate (BUT) dose-dependently inhibited food intake in an FFA2/3-dependent manner. The reduced food intake induced by ACE, PRO, or BUT was attributed to decreased meal size or increased intermeal interval. These regulatory effects on meal patterns were blunted in FFA2 and FFA3 double-receptor knockout mice, suggesting a mediating role of brain FFA2/3. Interestingly, RNAscope analysis showed that FFA3 but not FFA2 highly expressed in the cerebellar granule neurons. Using brain slice patch-clamp, we consistently showed that PRO or FFA3-selective agonists inhibited these granule neurons. Notably, the hyperpolarization effects of PRO on cerebellar granule neurons were blocked by pertussis toxin (PTX) , a G-protein coupled receptor subunit Gi/o blocker, further supporting an FFA3-Gi/o-mediated inhibition on granule neurons. These results suggest a model that SCFAs inhibit food intake through FFA3 expressed by the cerebellar granule neurons.
Key words: SCFA; Brain; FFA3</description><identifier>ISSN: 0012-1797</identifier><identifier>EISSN: 1939-327X</identifier><identifier>DOI: 10.2337/db22-1313-P</identifier><language>eng</language><publisher>New York: American Diabetes Association</publisher><subject>Acetic acid ; Brain slice preparation ; Central nervous system ; Cerebellum ; Diabetes ; Energy balance ; Fatty acids ; Food ; Food chains ; Food intake ; G protein-coupled receptors ; Granule cells ; Homeostasis ; Hyperpolarization ; Intestinal microflora ; Microbiota ; Neurons ; Nutrients ; Pertussis ; Pertussis toxin ; Propionic acid</subject><ispartof>Diabetes (New York, N.Y.), 2022-06, Vol.71 (Supplement_1)</ispartof><rights>Copyright American Diabetes Association Jun 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1065-f6c78b46b2b6ef56149680b2708d63819de1edd0960b1e176f5fcb34f6a9fbc43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>LUO, PEI</creatorcontrib><creatorcontrib>XU, PINGWEN</creatorcontrib><creatorcontrib>FENG, BING</creatorcontrib><creatorcontrib>YE, HUI</creatorcontrib><creatorcontrib>PATEL, NIRALI</creatorcontrib><creatorcontrib>LAYDEN, BRIAN T.</creatorcontrib><creatorcontrib>HE, YANLIN</creatorcontrib><creatorcontrib>KOTA, MAYA</creatorcontrib><creatorcontrib>DIXIT, DEVIN</creatorcontrib><creatorcontrib>ANTONY, NIMISHA</creatorcontrib><creatorcontrib>CARRILLO-SÁENZ, LESLIE</creatorcontrib><creatorcontrib>TORRES IRIZARRY, VALERIA C.</creatorcontrib><creatorcontrib>IBRAHIMI, LUCAS</creatorcontrib><creatorcontrib>SCHAUL, SARAH</creatorcontrib><title>1313-P: Short-Chain Fatty Acids Decrease Food Intake through Free Fatty Acid Receptors in the Brain</title><title>Diabetes (New York, N.Y.)</title><description>The influence of gut bacteria on host energy homeostasis is increasingly recognized, but mechanistic links are lacking. The gut microbiota digests and ferments nutrients, which result in short-chain fatty acids (SCFAs) . The body senses these nutrients in large part through free fatty acid receptors 2 (FFA2) and 3 (FFA3) . Accumulating evidence indicates that the gut microbiota/SCFAs interact with the central nervous system (CNS) to regulate brain metabolic function. Consistently, we found that a single acute intracerebroventricular (ICV) injection of acetate (ACE) , propionate (PRO) , or butyrate (BUT) dose-dependently inhibited food intake in an FFA2/3-dependent manner. The reduced food intake induced by ACE, PRO, or BUT was attributed to decreased meal size or increased intermeal interval. These regulatory effects on meal patterns were blunted in FFA2 and FFA3 double-receptor knockout mice, suggesting a mediating role of brain FFA2/3. Interestingly, RNAscope analysis showed that FFA3 but not FFA2 highly expressed in the cerebellar granule neurons. Using brain slice patch-clamp, we consistently showed that PRO or FFA3-selective agonists inhibited these granule neurons. Notably, the hyperpolarization effects of PRO on cerebellar granule neurons were blocked by pertussis toxin (PTX) , a G-protein coupled receptor subunit Gi/o blocker, further supporting an FFA3-Gi/o-mediated inhibition on granule neurons. These results suggest a model that SCFAs inhibit food intake through FFA3 expressed by the cerebellar granule neurons.
Key words: SCFA; Brain; FFA3</description><subject>Acetic acid</subject><subject>Brain slice preparation</subject><subject>Central nervous system</subject><subject>Cerebellum</subject><subject>Diabetes</subject><subject>Energy balance</subject><subject>Fatty acids</subject><subject>Food</subject><subject>Food chains</subject><subject>Food intake</subject><subject>G protein-coupled receptors</subject><subject>Granule cells</subject><subject>Homeostasis</subject><subject>Hyperpolarization</subject><subject>Intestinal microflora</subject><subject>Microbiota</subject><subject>Neurons</subject><subject>Nutrients</subject><subject>Pertussis</subject><subject>Pertussis toxin</subject><subject>Propionic acid</subject><issn>0012-1797</issn><issn>1939-327X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQQIMoWKsn_0DAo6wmm91k461WVwsFix_gLeRj4rZqU5P00H_vlvUgc5jDPN7AQ-ickquSMXHtTFkWlFFWLA7QiEomC1aK90M0IoT2FyHFMTpJaUUI4f2MkB3oG_zShZiLaaeXa9zqnHd4Ypcu4TuwEXQC3Ibg8Gyd9Sfg3MWw_ehwGwH-0fgZLGxyiAn3ltwBvo297xQdef2V4Oxvj9Fbe_86fSzmTw-z6WReWEp4XXhuRWMqbkrDwdecVpI3xJSCNI6zhkoHFJwjkhNDgQrua28NqzzX0htbsTG6GLybGH62kLJahW1c9y9VyZu6lpSLuqcuB8rGkFIErzZx-a3jTlGi9hXVvqLad1EL9gs832LD</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>LUO, PEI</creator><creator>XU, PINGWEN</creator><creator>FENG, BING</creator><creator>YE, HUI</creator><creator>PATEL, NIRALI</creator><creator>LAYDEN, BRIAN T.</creator><creator>HE, YANLIN</creator><creator>KOTA, MAYA</creator><creator>DIXIT, DEVIN</creator><creator>ANTONY, NIMISHA</creator><creator>CARRILLO-SÁENZ, LESLIE</creator><creator>TORRES IRIZARRY, VALERIA C.</creator><creator>IBRAHIMI, LUCAS</creator><creator>SCHAUL, SARAH</creator><general>American Diabetes Association</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope></search><sort><creationdate>20220601</creationdate><title>1313-P: Short-Chain Fatty Acids Decrease Food Intake through Free Fatty Acid Receptors in the Brain</title><author>LUO, PEI ; XU, PINGWEN ; FENG, BING ; YE, HUI ; PATEL, NIRALI ; LAYDEN, BRIAN T. ; HE, YANLIN ; KOTA, MAYA ; DIXIT, DEVIN ; ANTONY, NIMISHA ; CARRILLO-SÁENZ, LESLIE ; TORRES IRIZARRY, VALERIA C. ; IBRAHIMI, LUCAS ; SCHAUL, SARAH</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1065-f6c78b46b2b6ef56149680b2708d63819de1edd0960b1e176f5fcb34f6a9fbc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acetic acid</topic><topic>Brain slice preparation</topic><topic>Central nervous system</topic><topic>Cerebellum</topic><topic>Diabetes</topic><topic>Energy balance</topic><topic>Fatty acids</topic><topic>Food</topic><topic>Food chains</topic><topic>Food intake</topic><topic>G protein-coupled receptors</topic><topic>Granule cells</topic><topic>Homeostasis</topic><topic>Hyperpolarization</topic><topic>Intestinal microflora</topic><topic>Microbiota</topic><topic>Neurons</topic><topic>Nutrients</topic><topic>Pertussis</topic><topic>Pertussis toxin</topic><topic>Propionic acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LUO, PEI</creatorcontrib><creatorcontrib>XU, PINGWEN</creatorcontrib><creatorcontrib>FENG, BING</creatorcontrib><creatorcontrib>YE, HUI</creatorcontrib><creatorcontrib>PATEL, NIRALI</creatorcontrib><creatorcontrib>LAYDEN, BRIAN T.</creatorcontrib><creatorcontrib>HE, YANLIN</creatorcontrib><creatorcontrib>KOTA, MAYA</creatorcontrib><creatorcontrib>DIXIT, DEVIN</creatorcontrib><creatorcontrib>ANTONY, NIMISHA</creatorcontrib><creatorcontrib>CARRILLO-SÁENZ, LESLIE</creatorcontrib><creatorcontrib>TORRES IRIZARRY, VALERIA C.</creatorcontrib><creatorcontrib>IBRAHIMI, LUCAS</creatorcontrib><creatorcontrib>SCHAUL, SARAH</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><jtitle>Diabetes (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LUO, PEI</au><au>XU, PINGWEN</au><au>FENG, BING</au><au>YE, HUI</au><au>PATEL, NIRALI</au><au>LAYDEN, BRIAN T.</au><au>HE, YANLIN</au><au>KOTA, MAYA</au><au>DIXIT, DEVIN</au><au>ANTONY, NIMISHA</au><au>CARRILLO-SÁENZ, LESLIE</au><au>TORRES IRIZARRY, VALERIA C.</au><au>IBRAHIMI, LUCAS</au><au>SCHAUL, SARAH</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>1313-P: Short-Chain Fatty Acids Decrease Food Intake through Free Fatty Acid Receptors in the Brain</atitle><jtitle>Diabetes (New York, N.Y.)</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>71</volume><issue>Supplement_1</issue><issn>0012-1797</issn><eissn>1939-327X</eissn><abstract>The influence of gut bacteria on host energy homeostasis is increasingly recognized, but mechanistic links are lacking. The gut microbiota digests and ferments nutrients, which result in short-chain fatty acids (SCFAs) . The body senses these nutrients in large part through free fatty acid receptors 2 (FFA2) and 3 (FFA3) . Accumulating evidence indicates that the gut microbiota/SCFAs interact with the central nervous system (CNS) to regulate brain metabolic function. Consistently, we found that a single acute intracerebroventricular (ICV) injection of acetate (ACE) , propionate (PRO) , or butyrate (BUT) dose-dependently inhibited food intake in an FFA2/3-dependent manner. The reduced food intake induced by ACE, PRO, or BUT was attributed to decreased meal size or increased intermeal interval. These regulatory effects on meal patterns were blunted in FFA2 and FFA3 double-receptor knockout mice, suggesting a mediating role of brain FFA2/3. Interestingly, RNAscope analysis showed that FFA3 but not FFA2 highly expressed in the cerebellar granule neurons. Using brain slice patch-clamp, we consistently showed that PRO or FFA3-selective agonists inhibited these granule neurons. Notably, the hyperpolarization effects of PRO on cerebellar granule neurons were blocked by pertussis toxin (PTX) , a G-protein coupled receptor subunit Gi/o blocker, further supporting an FFA3-Gi/o-mediated inhibition on granule neurons. These results suggest a model that SCFAs inhibit food intake through FFA3 expressed by the cerebellar granule neurons.
Key words: SCFA; Brain; FFA3</abstract><cop>New York</cop><pub>American Diabetes Association</pub><doi>10.2337/db22-1313-P</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-1797 |
ispartof | Diabetes (New York, N.Y.), 2022-06, Vol.71 (Supplement_1) |
issn | 0012-1797 1939-327X |
language | eng |
recordid | cdi_proquest_journals_2685591675 |
source | EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Acetic acid Brain slice preparation Central nervous system Cerebellum Diabetes Energy balance Fatty acids Food Food chains Food intake G protein-coupled receptors Granule cells Homeostasis Hyperpolarization Intestinal microflora Microbiota Neurons Nutrients Pertussis Pertussis toxin Propionic acid |
title | 1313-P: Short-Chain Fatty Acids Decrease Food Intake through Free Fatty Acid Receptors in the Brain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A10%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=1313-P:%20Short-Chain%20Fatty%20Acids%20Decrease%20Food%20Intake%20through%20Free%20Fatty%20Acid%20Receptors%20in%20the%20Brain&rft.jtitle=Diabetes%20(New%20York,%20N.Y.)&rft.au=LUO,%20PEI&rft.date=2022-06-01&rft.volume=71&rft.issue=Supplement_1&rft.issn=0012-1797&rft.eissn=1939-327X&rft_id=info:doi/10.2337/db22-1313-P&rft_dat=%3Cproquest_cross%3E2685591675%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685591675&rft_id=info:pmid/&rfr_iscdi=true |