In-situ copper ion reduction and micro encapsulation of wood-based composite PCM with effective anisotropic thermal conductivity and energy storage
This work develops metallic wood-based phase change materials (MWPCM) with high-performance anisotropic thermal conductivity by impregnating wood with phase change microcapsules and subsequent in situ chemical deposition of copper inside the wood cell lumen. Phase change material (PCM) is encapsulat...
Gespeichert in:
Veröffentlicht in: | Solar energy materials and solar cells 2022-08, Vol.242, p.111762, Article 111762 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 111762 |
container_title | Solar energy materials and solar cells |
container_volume | 242 |
creator | Lin, Xianxian Chen, XinYu Weng, Lu Hu, Danhong Qiu, Chendong Liu, Pengwei Zhang, Yi Fan, Mizi Sun, Weisheng Guo, Xi |
description | This work develops metallic wood-based phase change materials (MWPCM) with high-performance anisotropic thermal conductivity by impregnating wood with phase change microcapsules and subsequent in situ chemical deposition of copper inside the wood cell lumen. Phase change material (PCM) is encapsulated by polymer to form phase change microcapsules, which solve the leakage problem effectively. Benefited with the well-aligned and hierarchical porous structure of wood, phase change microcapsules coated with copper layer are orderly confined inside wood vessels and fibers, developing a continuous and anisotropic heat transfer network along the highly oriented transport tissues of wood. The morphology, chemical structure and crystallization of microcapsules and MWPCM are investigated using scanning electronic microscope (SEM), flourier transformation infrared spectroscopy (FTIR) and X-ray diffractometer (XRD), and the thermal storage capacity, thermal stability and thermal conductivity of the developed PCM composites are examined using differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and laser flash diffusivity apparatus (LFA) respectively. The results show that PCM capsules were effectively accommodated in orderly porous wood as a carrier; the radial and longitudinal thermal conductivity of MWPCM reached 0.37 W/(m*K) and 0.53 W/(m*K), which increased by 362% and 211% compared to pure wood, respectively. The anisotropic thermal conductivity of MWPCM enabled an efficient heat transfer along the longitudinal direction and reduced the heat loss in the transverse direction. MWPCM exhibited good thermal energy storage capacity (92.9 J/g and 94.6 J/g) and suitable phase change temperature (11.4 °C and 29.4 °C) for indoor thermal energy management. MWPCM also displayed outstanding shape-stability, excellent thermal stability and temperature regulation, which has a great potential for building energy collecting, storage and management.
•Thermal energy storage wood was prepared by incorporating encapsulated PCM into wood.•Phase change microcapsules in wood were coated with copper by in situ mineralization.•Composite realized a unique anisotropic thermal conductivity.•The radial and longitudinal thermal conductivity were improved by 362% and 211%.•Composite had great latent heat, thermal stability and temperature regulation ability. |
doi_str_mv | 10.1016/j.solmat.2022.111762 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2685588606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024822001829</els_id><sourcerecordid>2685588606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-83e1c87bbc8fd761219d2f8ca69e08028086d31cd1f50365e38d3909e123064a3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKtv4CLgemou00xmI0jxBooudB3S5ExN6UzGJFPpc_jCph3Xrk44nP_7yYfQJSUzSqi4Xs-i37Q6zRhhbEYprQQ7QhMqq7rgvJbHaEJqVhWElfIUncW4JoQwwcsJ-nnqiujSgI3vewjY-Q4HsINJ-5fuLG6dCR5DZ3Qfh40-7H2Dv723xVJHsDna9j5DAL8tXvC3S58YmgYyYgsZ4aJPwffO4PQJodWbHOgODVuXdocO6CCsdjgmH_QKztFJozcRLv7mFH3c370vHovn14enxe1zYZgoUyE5UCOr5dLIxlaCMlpb1kijRQ1EEiaJFJZTY2kzJ1zMgUvLa1IDZZyIUvMpuhq5ffBfA8Sk1n4IXa5UTMj5XEpBRL4qx6usIcYAjeqDa3XYKUrUXr9aq1G_2utXo_4cuxljkH-wdRBUNC5bBOtCVqOsd_8DfgFDz5K_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685588606</pqid></control><display><type>article</type><title>In-situ copper ion reduction and micro encapsulation of wood-based composite PCM with effective anisotropic thermal conductivity and energy storage</title><source>Elsevier ScienceDirect Journals</source><creator>Lin, Xianxian ; Chen, XinYu ; Weng, Lu ; Hu, Danhong ; Qiu, Chendong ; Liu, Pengwei ; Zhang, Yi ; Fan, Mizi ; Sun, Weisheng ; Guo, Xi</creator><creatorcontrib>Lin, Xianxian ; Chen, XinYu ; Weng, Lu ; Hu, Danhong ; Qiu, Chendong ; Liu, Pengwei ; Zhang, Yi ; Fan, Mizi ; Sun, Weisheng ; Guo, Xi</creatorcontrib><description>This work develops metallic wood-based phase change materials (MWPCM) with high-performance anisotropic thermal conductivity by impregnating wood with phase change microcapsules and subsequent in situ chemical deposition of copper inside the wood cell lumen. Phase change material (PCM) is encapsulated by polymer to form phase change microcapsules, which solve the leakage problem effectively. Benefited with the well-aligned and hierarchical porous structure of wood, phase change microcapsules coated with copper layer are orderly confined inside wood vessels and fibers, developing a continuous and anisotropic heat transfer network along the highly oriented transport tissues of wood. The morphology, chemical structure and crystallization of microcapsules and MWPCM are investigated using scanning electronic microscope (SEM), flourier transformation infrared spectroscopy (FTIR) and X-ray diffractometer (XRD), and the thermal storage capacity, thermal stability and thermal conductivity of the developed PCM composites are examined using differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and laser flash diffusivity apparatus (LFA) respectively. The results show that PCM capsules were effectively accommodated in orderly porous wood as a carrier; the radial and longitudinal thermal conductivity of MWPCM reached 0.37 W/(m*K) and 0.53 W/(m*K), which increased by 362% and 211% compared to pure wood, respectively. The anisotropic thermal conductivity of MWPCM enabled an efficient heat transfer along the longitudinal direction and reduced the heat loss in the transverse direction. MWPCM exhibited good thermal energy storage capacity (92.9 J/g and 94.6 J/g) and suitable phase change temperature (11.4 °C and 29.4 °C) for indoor thermal energy management. MWPCM also displayed outstanding shape-stability, excellent thermal stability and temperature regulation, which has a great potential for building energy collecting, storage and management.
•Thermal energy storage wood was prepared by incorporating encapsulated PCM into wood.•Phase change microcapsules in wood were coated with copper by in situ mineralization.•Composite realized a unique anisotropic thermal conductivity.•The radial and longitudinal thermal conductivity were improved by 362% and 211%.•Composite had great latent heat, thermal stability and temperature regulation ability.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2022.111762</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anisotropic thermal conductivity ; Anisotropy ; Calorimetry ; Continuous fibers ; Copper ; Crystallization ; Differential scanning calorimetry ; Encapsulation ; Energy management ; Energy storage ; Fibers ; Gravimetric analysis ; Heat conductivity ; Heat loss ; Heat transfer ; Impregnation ; Infrared spectroscopy ; Microcapsules ; Microencapsulation ; Phase change material ; Phase change materials ; Polymers ; Shelf life ; Storage capacity ; Structural hierarchy ; Temperature regulation ; Thermal conductivity ; Thermal energy ; Thermal energy storage ; Thermal stability ; Thermal storage ; Wood carrier</subject><ispartof>Solar energy materials and solar cells, 2022-08, Vol.242, p.111762, Article 111762</ispartof><rights>2022</rights><rights>Copyright Elsevier BV Aug 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-83e1c87bbc8fd761219d2f8ca69e08028086d31cd1f50365e38d3909e123064a3</citedby><cites>FETCH-LOGICAL-c264t-83e1c87bbc8fd761219d2f8ca69e08028086d31cd1f50365e38d3909e123064a3</cites><orcidid>0000-0003-4218-6432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solmat.2022.111762$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Lin, Xianxian</creatorcontrib><creatorcontrib>Chen, XinYu</creatorcontrib><creatorcontrib>Weng, Lu</creatorcontrib><creatorcontrib>Hu, Danhong</creatorcontrib><creatorcontrib>Qiu, Chendong</creatorcontrib><creatorcontrib>Liu, Pengwei</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Fan, Mizi</creatorcontrib><creatorcontrib>Sun, Weisheng</creatorcontrib><creatorcontrib>Guo, Xi</creatorcontrib><title>In-situ copper ion reduction and micro encapsulation of wood-based composite PCM with effective anisotropic thermal conductivity and energy storage</title><title>Solar energy materials and solar cells</title><description>This work develops metallic wood-based phase change materials (MWPCM) with high-performance anisotropic thermal conductivity by impregnating wood with phase change microcapsules and subsequent in situ chemical deposition of copper inside the wood cell lumen. Phase change material (PCM) is encapsulated by polymer to form phase change microcapsules, which solve the leakage problem effectively. Benefited with the well-aligned and hierarchical porous structure of wood, phase change microcapsules coated with copper layer are orderly confined inside wood vessels and fibers, developing a continuous and anisotropic heat transfer network along the highly oriented transport tissues of wood. The morphology, chemical structure and crystallization of microcapsules and MWPCM are investigated using scanning electronic microscope (SEM), flourier transformation infrared spectroscopy (FTIR) and X-ray diffractometer (XRD), and the thermal storage capacity, thermal stability and thermal conductivity of the developed PCM composites are examined using differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and laser flash diffusivity apparatus (LFA) respectively. The results show that PCM capsules were effectively accommodated in orderly porous wood as a carrier; the radial and longitudinal thermal conductivity of MWPCM reached 0.37 W/(m*K) and 0.53 W/(m*K), which increased by 362% and 211% compared to pure wood, respectively. The anisotropic thermal conductivity of MWPCM enabled an efficient heat transfer along the longitudinal direction and reduced the heat loss in the transverse direction. MWPCM exhibited good thermal energy storage capacity (92.9 J/g and 94.6 J/g) and suitable phase change temperature (11.4 °C and 29.4 °C) for indoor thermal energy management. MWPCM also displayed outstanding shape-stability, excellent thermal stability and temperature regulation, which has a great potential for building energy collecting, storage and management.
•Thermal energy storage wood was prepared by incorporating encapsulated PCM into wood.•Phase change microcapsules in wood were coated with copper by in situ mineralization.•Composite realized a unique anisotropic thermal conductivity.•The radial and longitudinal thermal conductivity were improved by 362% and 211%.•Composite had great latent heat, thermal stability and temperature regulation ability.</description><subject>Anisotropic thermal conductivity</subject><subject>Anisotropy</subject><subject>Calorimetry</subject><subject>Continuous fibers</subject><subject>Copper</subject><subject>Crystallization</subject><subject>Differential scanning calorimetry</subject><subject>Encapsulation</subject><subject>Energy management</subject><subject>Energy storage</subject><subject>Fibers</subject><subject>Gravimetric analysis</subject><subject>Heat conductivity</subject><subject>Heat loss</subject><subject>Heat transfer</subject><subject>Impregnation</subject><subject>Infrared spectroscopy</subject><subject>Microcapsules</subject><subject>Microencapsulation</subject><subject>Phase change material</subject><subject>Phase change materials</subject><subject>Polymers</subject><subject>Shelf life</subject><subject>Storage capacity</subject><subject>Structural hierarchy</subject><subject>Temperature regulation</subject><subject>Thermal conductivity</subject><subject>Thermal energy</subject><subject>Thermal energy storage</subject><subject>Thermal stability</subject><subject>Thermal storage</subject><subject>Wood carrier</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKtv4CLgemou00xmI0jxBooudB3S5ExN6UzGJFPpc_jCph3Xrk44nP_7yYfQJSUzSqi4Xs-i37Q6zRhhbEYprQQ7QhMqq7rgvJbHaEJqVhWElfIUncW4JoQwwcsJ-nnqiujSgI3vewjY-Q4HsINJ-5fuLG6dCR5DZ3Qfh40-7H2Dv723xVJHsDna9j5DAL8tXvC3S58YmgYyYgsZ4aJPwffO4PQJodWbHOgODVuXdocO6CCsdjgmH_QKztFJozcRLv7mFH3c370vHovn14enxe1zYZgoUyE5UCOr5dLIxlaCMlpb1kijRQ1EEiaJFJZTY2kzJ1zMgUvLa1IDZZyIUvMpuhq5ffBfA8Sk1n4IXa5UTMj5XEpBRL4qx6usIcYAjeqDa3XYKUrUXr9aq1G_2utXo_4cuxljkH-wdRBUNC5bBOtCVqOsd_8DfgFDz5K_</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Lin, Xianxian</creator><creator>Chen, XinYu</creator><creator>Weng, Lu</creator><creator>Hu, Danhong</creator><creator>Qiu, Chendong</creator><creator>Liu, Pengwei</creator><creator>Zhang, Yi</creator><creator>Fan, Mizi</creator><creator>Sun, Weisheng</creator><creator>Guo, Xi</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4218-6432</orcidid></search><sort><creationdate>20220801</creationdate><title>In-situ copper ion reduction and micro encapsulation of wood-based composite PCM with effective anisotropic thermal conductivity and energy storage</title><author>Lin, Xianxian ; Chen, XinYu ; Weng, Lu ; Hu, Danhong ; Qiu, Chendong ; Liu, Pengwei ; Zhang, Yi ; Fan, Mizi ; Sun, Weisheng ; Guo, Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-83e1c87bbc8fd761219d2f8ca69e08028086d31cd1f50365e38d3909e123064a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anisotropic thermal conductivity</topic><topic>Anisotropy</topic><topic>Calorimetry</topic><topic>Continuous fibers</topic><topic>Copper</topic><topic>Crystallization</topic><topic>Differential scanning calorimetry</topic><topic>Encapsulation</topic><topic>Energy management</topic><topic>Energy storage</topic><topic>Fibers</topic><topic>Gravimetric analysis</topic><topic>Heat conductivity</topic><topic>Heat loss</topic><topic>Heat transfer</topic><topic>Impregnation</topic><topic>Infrared spectroscopy</topic><topic>Microcapsules</topic><topic>Microencapsulation</topic><topic>Phase change material</topic><topic>Phase change materials</topic><topic>Polymers</topic><topic>Shelf life</topic><topic>Storage capacity</topic><topic>Structural hierarchy</topic><topic>Temperature regulation</topic><topic>Thermal conductivity</topic><topic>Thermal energy</topic><topic>Thermal energy storage</topic><topic>Thermal stability</topic><topic>Thermal storage</topic><topic>Wood carrier</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Xianxian</creatorcontrib><creatorcontrib>Chen, XinYu</creatorcontrib><creatorcontrib>Weng, Lu</creatorcontrib><creatorcontrib>Hu, Danhong</creatorcontrib><creatorcontrib>Qiu, Chendong</creatorcontrib><creatorcontrib>Liu, Pengwei</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Fan, Mizi</creatorcontrib><creatorcontrib>Sun, Weisheng</creatorcontrib><creatorcontrib>Guo, Xi</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Xianxian</au><au>Chen, XinYu</au><au>Weng, Lu</au><au>Hu, Danhong</au><au>Qiu, Chendong</au><au>Liu, Pengwei</au><au>Zhang, Yi</au><au>Fan, Mizi</au><au>Sun, Weisheng</au><au>Guo, Xi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-situ copper ion reduction and micro encapsulation of wood-based composite PCM with effective anisotropic thermal conductivity and energy storage</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>242</volume><spage>111762</spage><pages>111762-</pages><artnum>111762</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>This work develops metallic wood-based phase change materials (MWPCM) with high-performance anisotropic thermal conductivity by impregnating wood with phase change microcapsules and subsequent in situ chemical deposition of copper inside the wood cell lumen. Phase change material (PCM) is encapsulated by polymer to form phase change microcapsules, which solve the leakage problem effectively. Benefited with the well-aligned and hierarchical porous structure of wood, phase change microcapsules coated with copper layer are orderly confined inside wood vessels and fibers, developing a continuous and anisotropic heat transfer network along the highly oriented transport tissues of wood. The morphology, chemical structure and crystallization of microcapsules and MWPCM are investigated using scanning electronic microscope (SEM), flourier transformation infrared spectroscopy (FTIR) and X-ray diffractometer (XRD), and the thermal storage capacity, thermal stability and thermal conductivity of the developed PCM composites are examined using differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and laser flash diffusivity apparatus (LFA) respectively. The results show that PCM capsules were effectively accommodated in orderly porous wood as a carrier; the radial and longitudinal thermal conductivity of MWPCM reached 0.37 W/(m*K) and 0.53 W/(m*K), which increased by 362% and 211% compared to pure wood, respectively. The anisotropic thermal conductivity of MWPCM enabled an efficient heat transfer along the longitudinal direction and reduced the heat loss in the transverse direction. MWPCM exhibited good thermal energy storage capacity (92.9 J/g and 94.6 J/g) and suitable phase change temperature (11.4 °C and 29.4 °C) for indoor thermal energy management. MWPCM also displayed outstanding shape-stability, excellent thermal stability and temperature regulation, which has a great potential for building energy collecting, storage and management.
•Thermal energy storage wood was prepared by incorporating encapsulated PCM into wood.•Phase change microcapsules in wood were coated with copper by in situ mineralization.•Composite realized a unique anisotropic thermal conductivity.•The radial and longitudinal thermal conductivity were improved by 362% and 211%.•Composite had great latent heat, thermal stability and temperature regulation ability.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2022.111762</doi><orcidid>https://orcid.org/0000-0003-4218-6432</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0248 |
ispartof | Solar energy materials and solar cells, 2022-08, Vol.242, p.111762, Article 111762 |
issn | 0927-0248 1879-3398 |
language | eng |
recordid | cdi_proquest_journals_2685588606 |
source | Elsevier ScienceDirect Journals |
subjects | Anisotropic thermal conductivity Anisotropy Calorimetry Continuous fibers Copper Crystallization Differential scanning calorimetry Encapsulation Energy management Energy storage Fibers Gravimetric analysis Heat conductivity Heat loss Heat transfer Impregnation Infrared spectroscopy Microcapsules Microencapsulation Phase change material Phase change materials Polymers Shelf life Storage capacity Structural hierarchy Temperature regulation Thermal conductivity Thermal energy Thermal energy storage Thermal stability Thermal storage Wood carrier |
title | In-situ copper ion reduction and micro encapsulation of wood-based composite PCM with effective anisotropic thermal conductivity and energy storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A56%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-situ%20copper%20ion%20reduction%20and%20micro%20encapsulation%20of%20wood-based%20composite%20PCM%20with%20effective%20anisotropic%20thermal%20conductivity%20and%20energy%20storage&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Lin,%20Xianxian&rft.date=2022-08-01&rft.volume=242&rft.spage=111762&rft.pages=111762-&rft.artnum=111762&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2022.111762&rft_dat=%3Cproquest_cross%3E2685588606%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685588606&rft_id=info:pmid/&rft_els_id=S0927024822001829&rfr_iscdi=true |