In-situ copper ion reduction and micro encapsulation of wood-based composite PCM with effective anisotropic thermal conductivity and energy storage

This work develops metallic wood-based phase change materials (MWPCM) with high-performance anisotropic thermal conductivity by impregnating wood with phase change microcapsules and subsequent in situ chemical deposition of copper inside the wood cell lumen. Phase change material (PCM) is encapsulat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy materials and solar cells 2022-08, Vol.242, p.111762, Article 111762
Hauptverfasser: Lin, Xianxian, Chen, XinYu, Weng, Lu, Hu, Danhong, Qiu, Chendong, Liu, Pengwei, Zhang, Yi, Fan, Mizi, Sun, Weisheng, Guo, Xi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 111762
container_title Solar energy materials and solar cells
container_volume 242
creator Lin, Xianxian
Chen, XinYu
Weng, Lu
Hu, Danhong
Qiu, Chendong
Liu, Pengwei
Zhang, Yi
Fan, Mizi
Sun, Weisheng
Guo, Xi
description This work develops metallic wood-based phase change materials (MWPCM) with high-performance anisotropic thermal conductivity by impregnating wood with phase change microcapsules and subsequent in situ chemical deposition of copper inside the wood cell lumen. Phase change material (PCM) is encapsulated by polymer to form phase change microcapsules, which solve the leakage problem effectively. Benefited with the well-aligned and hierarchical porous structure of wood, phase change microcapsules coated with copper layer are orderly confined inside wood vessels and fibers, developing a continuous and anisotropic heat transfer network along the highly oriented transport tissues of wood. The morphology, chemical structure and crystallization of microcapsules and MWPCM are investigated using scanning electronic microscope (SEM), flourier transformation infrared spectroscopy (FTIR) and X-ray diffractometer (XRD), and the thermal storage capacity, thermal stability and thermal conductivity of the developed PCM composites are examined using differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and laser flash diffusivity apparatus (LFA) respectively. The results show that PCM capsules were effectively accommodated in orderly porous wood as a carrier; the radial and longitudinal thermal conductivity of MWPCM reached 0.37 W/(m*K) and 0.53 W/(m*K), which increased by 362% and 211% compared to pure wood, respectively. The anisotropic thermal conductivity of MWPCM enabled an efficient heat transfer along the longitudinal direction and reduced the heat loss in the transverse direction. MWPCM exhibited good thermal energy storage capacity (92.9 J/g and 94.6 J/g) and suitable phase change temperature (11.4 °C and 29.4 °C) for indoor thermal energy management. MWPCM also displayed outstanding shape-stability, excellent thermal stability and temperature regulation, which has a great potential for building energy collecting, storage and management. •Thermal energy storage wood was prepared by incorporating encapsulated PCM into wood.•Phase change microcapsules in wood were coated with copper by in situ mineralization.•Composite realized a unique anisotropic thermal conductivity.•The radial and longitudinal thermal conductivity were improved by 362% and 211%.•Composite had great latent heat, thermal stability and temperature regulation ability.
doi_str_mv 10.1016/j.solmat.2022.111762
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2685588606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024822001829</els_id><sourcerecordid>2685588606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-83e1c87bbc8fd761219d2f8ca69e08028086d31cd1f50365e38d3909e123064a3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKtv4CLgemou00xmI0jxBooudB3S5ExN6UzGJFPpc_jCph3Xrk44nP_7yYfQJSUzSqi4Xs-i37Q6zRhhbEYprQQ7QhMqq7rgvJbHaEJqVhWElfIUncW4JoQwwcsJ-nnqiujSgI3vewjY-Q4HsINJ-5fuLG6dCR5DZ3Qfh40-7H2Dv723xVJHsDna9j5DAL8tXvC3S58YmgYyYgsZ4aJPwffO4PQJodWbHOgODVuXdocO6CCsdjgmH_QKztFJozcRLv7mFH3c370vHovn14enxe1zYZgoUyE5UCOr5dLIxlaCMlpb1kijRQ1EEiaJFJZTY2kzJ1zMgUvLa1IDZZyIUvMpuhq5ffBfA8Sk1n4IXa5UTMj5XEpBRL4qx6usIcYAjeqDa3XYKUrUXr9aq1G_2utXo_4cuxljkH-wdRBUNC5bBOtCVqOsd_8DfgFDz5K_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685588606</pqid></control><display><type>article</type><title>In-situ copper ion reduction and micro encapsulation of wood-based composite PCM with effective anisotropic thermal conductivity and energy storage</title><source>Elsevier ScienceDirect Journals</source><creator>Lin, Xianxian ; Chen, XinYu ; Weng, Lu ; Hu, Danhong ; Qiu, Chendong ; Liu, Pengwei ; Zhang, Yi ; Fan, Mizi ; Sun, Weisheng ; Guo, Xi</creator><creatorcontrib>Lin, Xianxian ; Chen, XinYu ; Weng, Lu ; Hu, Danhong ; Qiu, Chendong ; Liu, Pengwei ; Zhang, Yi ; Fan, Mizi ; Sun, Weisheng ; Guo, Xi</creatorcontrib><description>This work develops metallic wood-based phase change materials (MWPCM) with high-performance anisotropic thermal conductivity by impregnating wood with phase change microcapsules and subsequent in situ chemical deposition of copper inside the wood cell lumen. Phase change material (PCM) is encapsulated by polymer to form phase change microcapsules, which solve the leakage problem effectively. Benefited with the well-aligned and hierarchical porous structure of wood, phase change microcapsules coated with copper layer are orderly confined inside wood vessels and fibers, developing a continuous and anisotropic heat transfer network along the highly oriented transport tissues of wood. The morphology, chemical structure and crystallization of microcapsules and MWPCM are investigated using scanning electronic microscope (SEM), flourier transformation infrared spectroscopy (FTIR) and X-ray diffractometer (XRD), and the thermal storage capacity, thermal stability and thermal conductivity of the developed PCM composites are examined using differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and laser flash diffusivity apparatus (LFA) respectively. The results show that PCM capsules were effectively accommodated in orderly porous wood as a carrier; the radial and longitudinal thermal conductivity of MWPCM reached 0.37 W/(m*K) and 0.53 W/(m*K), which increased by 362% and 211% compared to pure wood, respectively. The anisotropic thermal conductivity of MWPCM enabled an efficient heat transfer along the longitudinal direction and reduced the heat loss in the transverse direction. MWPCM exhibited good thermal energy storage capacity (92.9 J/g and 94.6 J/g) and suitable phase change temperature (11.4 °C and 29.4 °C) for indoor thermal energy management. MWPCM also displayed outstanding shape-stability, excellent thermal stability and temperature regulation, which has a great potential for building energy collecting, storage and management. •Thermal energy storage wood was prepared by incorporating encapsulated PCM into wood.•Phase change microcapsules in wood were coated with copper by in situ mineralization.•Composite realized a unique anisotropic thermal conductivity.•The radial and longitudinal thermal conductivity were improved by 362% and 211%.•Composite had great latent heat, thermal stability and temperature regulation ability.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2022.111762</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anisotropic thermal conductivity ; Anisotropy ; Calorimetry ; Continuous fibers ; Copper ; Crystallization ; Differential scanning calorimetry ; Encapsulation ; Energy management ; Energy storage ; Fibers ; Gravimetric analysis ; Heat conductivity ; Heat loss ; Heat transfer ; Impregnation ; Infrared spectroscopy ; Microcapsules ; Microencapsulation ; Phase change material ; Phase change materials ; Polymers ; Shelf life ; Storage capacity ; Structural hierarchy ; Temperature regulation ; Thermal conductivity ; Thermal energy ; Thermal energy storage ; Thermal stability ; Thermal storage ; Wood carrier</subject><ispartof>Solar energy materials and solar cells, 2022-08, Vol.242, p.111762, Article 111762</ispartof><rights>2022</rights><rights>Copyright Elsevier BV Aug 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-83e1c87bbc8fd761219d2f8ca69e08028086d31cd1f50365e38d3909e123064a3</citedby><cites>FETCH-LOGICAL-c264t-83e1c87bbc8fd761219d2f8ca69e08028086d31cd1f50365e38d3909e123064a3</cites><orcidid>0000-0003-4218-6432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solmat.2022.111762$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Lin, Xianxian</creatorcontrib><creatorcontrib>Chen, XinYu</creatorcontrib><creatorcontrib>Weng, Lu</creatorcontrib><creatorcontrib>Hu, Danhong</creatorcontrib><creatorcontrib>Qiu, Chendong</creatorcontrib><creatorcontrib>Liu, Pengwei</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Fan, Mizi</creatorcontrib><creatorcontrib>Sun, Weisheng</creatorcontrib><creatorcontrib>Guo, Xi</creatorcontrib><title>In-situ copper ion reduction and micro encapsulation of wood-based composite PCM with effective anisotropic thermal conductivity and energy storage</title><title>Solar energy materials and solar cells</title><description>This work develops metallic wood-based phase change materials (MWPCM) with high-performance anisotropic thermal conductivity by impregnating wood with phase change microcapsules and subsequent in situ chemical deposition of copper inside the wood cell lumen. Phase change material (PCM) is encapsulated by polymer to form phase change microcapsules, which solve the leakage problem effectively. Benefited with the well-aligned and hierarchical porous structure of wood, phase change microcapsules coated with copper layer are orderly confined inside wood vessels and fibers, developing a continuous and anisotropic heat transfer network along the highly oriented transport tissues of wood. The morphology, chemical structure and crystallization of microcapsules and MWPCM are investigated using scanning electronic microscope (SEM), flourier transformation infrared spectroscopy (FTIR) and X-ray diffractometer (XRD), and the thermal storage capacity, thermal stability and thermal conductivity of the developed PCM composites are examined using differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and laser flash diffusivity apparatus (LFA) respectively. The results show that PCM capsules were effectively accommodated in orderly porous wood as a carrier; the radial and longitudinal thermal conductivity of MWPCM reached 0.37 W/(m*K) and 0.53 W/(m*K), which increased by 362% and 211% compared to pure wood, respectively. The anisotropic thermal conductivity of MWPCM enabled an efficient heat transfer along the longitudinal direction and reduced the heat loss in the transverse direction. MWPCM exhibited good thermal energy storage capacity (92.9 J/g and 94.6 J/g) and suitable phase change temperature (11.4 °C and 29.4 °C) for indoor thermal energy management. MWPCM also displayed outstanding shape-stability, excellent thermal stability and temperature regulation, which has a great potential for building energy collecting, storage and management. •Thermal energy storage wood was prepared by incorporating encapsulated PCM into wood.•Phase change microcapsules in wood were coated with copper by in situ mineralization.•Composite realized a unique anisotropic thermal conductivity.•The radial and longitudinal thermal conductivity were improved by 362% and 211%.•Composite had great latent heat, thermal stability and temperature regulation ability.</description><subject>Anisotropic thermal conductivity</subject><subject>Anisotropy</subject><subject>Calorimetry</subject><subject>Continuous fibers</subject><subject>Copper</subject><subject>Crystallization</subject><subject>Differential scanning calorimetry</subject><subject>Encapsulation</subject><subject>Energy management</subject><subject>Energy storage</subject><subject>Fibers</subject><subject>Gravimetric analysis</subject><subject>Heat conductivity</subject><subject>Heat loss</subject><subject>Heat transfer</subject><subject>Impregnation</subject><subject>Infrared spectroscopy</subject><subject>Microcapsules</subject><subject>Microencapsulation</subject><subject>Phase change material</subject><subject>Phase change materials</subject><subject>Polymers</subject><subject>Shelf life</subject><subject>Storage capacity</subject><subject>Structural hierarchy</subject><subject>Temperature regulation</subject><subject>Thermal conductivity</subject><subject>Thermal energy</subject><subject>Thermal energy storage</subject><subject>Thermal stability</subject><subject>Thermal storage</subject><subject>Wood carrier</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKtv4CLgemou00xmI0jxBooudB3S5ExN6UzGJFPpc_jCph3Xrk44nP_7yYfQJSUzSqi4Xs-i37Q6zRhhbEYprQQ7QhMqq7rgvJbHaEJqVhWElfIUncW4JoQwwcsJ-nnqiujSgI3vewjY-Q4HsINJ-5fuLG6dCR5DZ3Qfh40-7H2Dv723xVJHsDna9j5DAL8tXvC3S58YmgYyYgsZ4aJPwffO4PQJodWbHOgODVuXdocO6CCsdjgmH_QKztFJozcRLv7mFH3c370vHovn14enxe1zYZgoUyE5UCOr5dLIxlaCMlpb1kijRQ1EEiaJFJZTY2kzJ1zMgUvLa1IDZZyIUvMpuhq5ffBfA8Sk1n4IXa5UTMj5XEpBRL4qx6usIcYAjeqDa3XYKUrUXr9aq1G_2utXo_4cuxljkH-wdRBUNC5bBOtCVqOsd_8DfgFDz5K_</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Lin, Xianxian</creator><creator>Chen, XinYu</creator><creator>Weng, Lu</creator><creator>Hu, Danhong</creator><creator>Qiu, Chendong</creator><creator>Liu, Pengwei</creator><creator>Zhang, Yi</creator><creator>Fan, Mizi</creator><creator>Sun, Weisheng</creator><creator>Guo, Xi</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4218-6432</orcidid></search><sort><creationdate>20220801</creationdate><title>In-situ copper ion reduction and micro encapsulation of wood-based composite PCM with effective anisotropic thermal conductivity and energy storage</title><author>Lin, Xianxian ; Chen, XinYu ; Weng, Lu ; Hu, Danhong ; Qiu, Chendong ; Liu, Pengwei ; Zhang, Yi ; Fan, Mizi ; Sun, Weisheng ; Guo, Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-83e1c87bbc8fd761219d2f8ca69e08028086d31cd1f50365e38d3909e123064a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anisotropic thermal conductivity</topic><topic>Anisotropy</topic><topic>Calorimetry</topic><topic>Continuous fibers</topic><topic>Copper</topic><topic>Crystallization</topic><topic>Differential scanning calorimetry</topic><topic>Encapsulation</topic><topic>Energy management</topic><topic>Energy storage</topic><topic>Fibers</topic><topic>Gravimetric analysis</topic><topic>Heat conductivity</topic><topic>Heat loss</topic><topic>Heat transfer</topic><topic>Impregnation</topic><topic>Infrared spectroscopy</topic><topic>Microcapsules</topic><topic>Microencapsulation</topic><topic>Phase change material</topic><topic>Phase change materials</topic><topic>Polymers</topic><topic>Shelf life</topic><topic>Storage capacity</topic><topic>Structural hierarchy</topic><topic>Temperature regulation</topic><topic>Thermal conductivity</topic><topic>Thermal energy</topic><topic>Thermal energy storage</topic><topic>Thermal stability</topic><topic>Thermal storage</topic><topic>Wood carrier</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Xianxian</creatorcontrib><creatorcontrib>Chen, XinYu</creatorcontrib><creatorcontrib>Weng, Lu</creatorcontrib><creatorcontrib>Hu, Danhong</creatorcontrib><creatorcontrib>Qiu, Chendong</creatorcontrib><creatorcontrib>Liu, Pengwei</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Fan, Mizi</creatorcontrib><creatorcontrib>Sun, Weisheng</creatorcontrib><creatorcontrib>Guo, Xi</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Xianxian</au><au>Chen, XinYu</au><au>Weng, Lu</au><au>Hu, Danhong</au><au>Qiu, Chendong</au><au>Liu, Pengwei</au><au>Zhang, Yi</au><au>Fan, Mizi</au><au>Sun, Weisheng</au><au>Guo, Xi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-situ copper ion reduction and micro encapsulation of wood-based composite PCM with effective anisotropic thermal conductivity and energy storage</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>242</volume><spage>111762</spage><pages>111762-</pages><artnum>111762</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>This work develops metallic wood-based phase change materials (MWPCM) with high-performance anisotropic thermal conductivity by impregnating wood with phase change microcapsules and subsequent in situ chemical deposition of copper inside the wood cell lumen. Phase change material (PCM) is encapsulated by polymer to form phase change microcapsules, which solve the leakage problem effectively. Benefited with the well-aligned and hierarchical porous structure of wood, phase change microcapsules coated with copper layer are orderly confined inside wood vessels and fibers, developing a continuous and anisotropic heat transfer network along the highly oriented transport tissues of wood. The morphology, chemical structure and crystallization of microcapsules and MWPCM are investigated using scanning electronic microscope (SEM), flourier transformation infrared spectroscopy (FTIR) and X-ray diffractometer (XRD), and the thermal storage capacity, thermal stability and thermal conductivity of the developed PCM composites are examined using differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and laser flash diffusivity apparatus (LFA) respectively. The results show that PCM capsules were effectively accommodated in orderly porous wood as a carrier; the radial and longitudinal thermal conductivity of MWPCM reached 0.37 W/(m*K) and 0.53 W/(m*K), which increased by 362% and 211% compared to pure wood, respectively. The anisotropic thermal conductivity of MWPCM enabled an efficient heat transfer along the longitudinal direction and reduced the heat loss in the transverse direction. MWPCM exhibited good thermal energy storage capacity (92.9 J/g and 94.6 J/g) and suitable phase change temperature (11.4 °C and 29.4 °C) for indoor thermal energy management. MWPCM also displayed outstanding shape-stability, excellent thermal stability and temperature regulation, which has a great potential for building energy collecting, storage and management. •Thermal energy storage wood was prepared by incorporating encapsulated PCM into wood.•Phase change microcapsules in wood were coated with copper by in situ mineralization.•Composite realized a unique anisotropic thermal conductivity.•The radial and longitudinal thermal conductivity were improved by 362% and 211%.•Composite had great latent heat, thermal stability and temperature regulation ability.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2022.111762</doi><orcidid>https://orcid.org/0000-0003-4218-6432</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2022-08, Vol.242, p.111762, Article 111762
issn 0927-0248
1879-3398
language eng
recordid cdi_proquest_journals_2685588606
source Elsevier ScienceDirect Journals
subjects Anisotropic thermal conductivity
Anisotropy
Calorimetry
Continuous fibers
Copper
Crystallization
Differential scanning calorimetry
Encapsulation
Energy management
Energy storage
Fibers
Gravimetric analysis
Heat conductivity
Heat loss
Heat transfer
Impregnation
Infrared spectroscopy
Microcapsules
Microencapsulation
Phase change material
Phase change materials
Polymers
Shelf life
Storage capacity
Structural hierarchy
Temperature regulation
Thermal conductivity
Thermal energy
Thermal energy storage
Thermal stability
Thermal storage
Wood carrier
title In-situ copper ion reduction and micro encapsulation of wood-based composite PCM with effective anisotropic thermal conductivity and energy storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A56%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-situ%20copper%20ion%20reduction%20and%20micro%20encapsulation%20of%20wood-based%20composite%20PCM%20with%20effective%20anisotropic%20thermal%20conductivity%20and%20energy%20storage&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Lin,%20Xianxian&rft.date=2022-08-01&rft.volume=242&rft.spage=111762&rft.pages=111762-&rft.artnum=111762&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2022.111762&rft_dat=%3Cproquest_cross%3E2685588606%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685588606&rft_id=info:pmid/&rft_els_id=S0927024822001829&rfr_iscdi=true