Markov Approximations of the Evolution of Quantum Systems
The convergence in probability of a sequence of iterations of independent random quantum dynamical semigroups to a Markov process describing the evolution of an open quantum system is studied. The statistical properties of the dynamics of open quantum systems with random generators of Markovian evol...
Gespeichert in:
Veröffentlicht in: | Doklady. Mathematics 2022-04, Vol.105 (2), p.92-96 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 96 |
---|---|
container_issue | 2 |
container_start_page | 92 |
container_title | Doklady. Mathematics |
container_volume | 105 |
creator | Gough, J. Orlov, Yu. N. Sakbaev, V. Zh Smolyanov, O. G. |
description | The convergence in probability of a sequence of iterations of independent random quantum dynamical semigroups to a Markov process describing the evolution of an open quantum system is studied. The statistical properties of the dynamics of open quantum systems with random generators of Markovian evolution are described in terms of the law of large numbers for operator-valued random processes. For compositions of independent random semigroups of completely positive operators, the convergence of mean values to a semigroup described by the Gorini–Kossakowski–Sudarshan–Lindblad equation is established. Moreover, a sequence of random operator-valued functions with values in the set of operators without the infinite divisibility property is shown to converge in probability to an operator-valued function with values in the set of infinitely divisible operators. |
doi_str_mv | 10.1134/S1064562422020107 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2685498450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2685498450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-9dfeb6e5090d0fdb0d6ad191c656f805ca4c9027026f5ace3a457083d5cab5b13</originalsourceid><addsrcrecordid>eNp1UEtLw0AQXkTBWv0B3gKeo7PPZI-l1AdURKrnsNmHtjbZupsU--_dEMGDeJphvsfMfAhdYrjGmLKbFQbBuCCMECCAoThCE8wpzksqyHHqE5wP-Ck6i3EDwDgBmCD5qMKH32ez3S74r3WjurVvY-Zd1r3bbLH3236YDIPnXrVd32SrQ-xsE8_RiVPbaC9-6hS93i5e5vf58unuYT5b5ppy2eXSOFsLy0GCAWdqMEIZLLEWXLgSuFZMSyAFEOG40pYqxgsoqUlIzWtMp-hq9E0HfvY2dtXG96FNKysiSs5kyTgkFh5ZOvgYg3XVLqRvwqHCUA0JVX8SShoyamLitm82_Dr_L_oGgZJnDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685498450</pqid></control><display><type>article</type><title>Markov Approximations of the Evolution of Quantum Systems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gough, J. ; Orlov, Yu. N. ; Sakbaev, V. Zh ; Smolyanov, O. G.</creator><creatorcontrib>Gough, J. ; Orlov, Yu. N. ; Sakbaev, V. Zh ; Smolyanov, O. G.</creatorcontrib><description>The convergence in probability of a sequence of iterations of independent random quantum dynamical semigroups to a Markov process describing the evolution of an open quantum system is studied. The statistical properties of the dynamics of open quantum systems with random generators of Markovian evolution are described in terms of the law of large numbers for operator-valued random processes. For compositions of independent random semigroups of completely positive operators, the convergence of mean values to a semigroup described by the Gorini–Kossakowski–Sudarshan–Lindblad equation is established. Moreover, a sequence of random operator-valued functions with values in the set of operators without the infinite divisibility property is shown to converge in probability to an operator-valued function with values in the set of infinitely divisible operators.</description><identifier>ISSN: 1064-5624</identifier><identifier>EISSN: 1531-8362</identifier><identifier>DOI: 10.1134/S1064562422020107</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Convergence ; Evolution ; Markov processes ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Probability theory ; Quantum theory ; Random processes ; Semigroups ; Statistical analysis</subject><ispartof>Doklady. Mathematics, 2022-04, Vol.105 (2), p.92-96</ispartof><rights>The Author(s) 2022. ISSN 1064-5624, Doklady Mathematics, 2022, Vol. 105, No. 2, pp. 92–96. © The Author(s), 2022. This article is an open access publication, corrected publication 2022. Russian Text © The Author(s), 2022, published in Doklady Rossiiskoi Akademii Nauk. Matematika, Informatika, Protsessy Upravleniya, 2022, Vol. 503, pp. 48–53.</rights><rights>The Author(s) 2022. ISSN 1064-5624, Doklady Mathematics, 2022, Vol. 105, No. 2, pp. 92–96. © The Author(s), 2022. This article is an open access publication, corrected publication 2022. Russian Text © The Author(s), 2022, published in Doklady Rossiiskoi Akademii Nauk. Matematika, Informatika, Protsessy Upravleniya, 2022, Vol. 503, pp. 48–53. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-9dfeb6e5090d0fdb0d6ad191c656f805ca4c9027026f5ace3a457083d5cab5b13</citedby><cites>FETCH-LOGICAL-c359t-9dfeb6e5090d0fdb0d6ad191c656f805ca4c9027026f5ace3a457083d5cab5b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1064562422020107$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1064562422020107$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gough, J.</creatorcontrib><creatorcontrib>Orlov, Yu. N.</creatorcontrib><creatorcontrib>Sakbaev, V. Zh</creatorcontrib><creatorcontrib>Smolyanov, O. G.</creatorcontrib><title>Markov Approximations of the Evolution of Quantum Systems</title><title>Doklady. Mathematics</title><addtitle>Dokl. Math</addtitle><description>The convergence in probability of a sequence of iterations of independent random quantum dynamical semigroups to a Markov process describing the evolution of an open quantum system is studied. The statistical properties of the dynamics of open quantum systems with random generators of Markovian evolution are described in terms of the law of large numbers for operator-valued random processes. For compositions of independent random semigroups of completely positive operators, the convergence of mean values to a semigroup described by the Gorini–Kossakowski–Sudarshan–Lindblad equation is established. Moreover, a sequence of random operator-valued functions with values in the set of operators without the infinite divisibility property is shown to converge in probability to an operator-valued function with values in the set of infinitely divisible operators.</description><subject>Convergence</subject><subject>Evolution</subject><subject>Markov processes</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Probability theory</subject><subject>Quantum theory</subject><subject>Random processes</subject><subject>Semigroups</subject><subject>Statistical analysis</subject><issn>1064-5624</issn><issn>1531-8362</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1UEtLw0AQXkTBWv0B3gKeo7PPZI-l1AdURKrnsNmHtjbZupsU--_dEMGDeJphvsfMfAhdYrjGmLKbFQbBuCCMECCAoThCE8wpzksqyHHqE5wP-Ck6i3EDwDgBmCD5qMKH32ez3S74r3WjurVvY-Zd1r3bbLH3236YDIPnXrVd32SrQ-xsE8_RiVPbaC9-6hS93i5e5vf58unuYT5b5ppy2eXSOFsLy0GCAWdqMEIZLLEWXLgSuFZMSyAFEOG40pYqxgsoqUlIzWtMp-hq9E0HfvY2dtXG96FNKysiSs5kyTgkFh5ZOvgYg3XVLqRvwqHCUA0JVX8SShoyamLitm82_Dr_L_oGgZJnDA</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Gough, J.</creator><creator>Orlov, Yu. N.</creator><creator>Sakbaev, V. Zh</creator><creator>Smolyanov, O. G.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220401</creationdate><title>Markov Approximations of the Evolution of Quantum Systems</title><author>Gough, J. ; Orlov, Yu. N. ; Sakbaev, V. Zh ; Smolyanov, O. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-9dfeb6e5090d0fdb0d6ad191c656f805ca4c9027026f5ace3a457083d5cab5b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convergence</topic><topic>Evolution</topic><topic>Markov processes</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Probability theory</topic><topic>Quantum theory</topic><topic>Random processes</topic><topic>Semigroups</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gough, J.</creatorcontrib><creatorcontrib>Orlov, Yu. N.</creatorcontrib><creatorcontrib>Sakbaev, V. Zh</creatorcontrib><creatorcontrib>Smolyanov, O. G.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Doklady. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gough, J.</au><au>Orlov, Yu. N.</au><au>Sakbaev, V. Zh</au><au>Smolyanov, O. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Markov Approximations of the Evolution of Quantum Systems</atitle><jtitle>Doklady. Mathematics</jtitle><stitle>Dokl. Math</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>105</volume><issue>2</issue><spage>92</spage><epage>96</epage><pages>92-96</pages><issn>1064-5624</issn><eissn>1531-8362</eissn><abstract>The convergence in probability of a sequence of iterations of independent random quantum dynamical semigroups to a Markov process describing the evolution of an open quantum system is studied. The statistical properties of the dynamics of open quantum systems with random generators of Markovian evolution are described in terms of the law of large numbers for operator-valued random processes. For compositions of independent random semigroups of completely positive operators, the convergence of mean values to a semigroup described by the Gorini–Kossakowski–Sudarshan–Lindblad equation is established. Moreover, a sequence of random operator-valued functions with values in the set of operators without the infinite divisibility property is shown to converge in probability to an operator-valued function with values in the set of infinitely divisible operators.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064562422020107</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5624 |
ispartof | Doklady. Mathematics, 2022-04, Vol.105 (2), p.92-96 |
issn | 1064-5624 1531-8362 |
language | eng |
recordid | cdi_proquest_journals_2685498450 |
source | SpringerLink Journals - AutoHoldings |
subjects | Convergence Evolution Markov processes Mathematics Mathematics and Statistics Operators (mathematics) Probability theory Quantum theory Random processes Semigroups Statistical analysis |
title | Markov Approximations of the Evolution of Quantum Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A11%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Markov%20Approximations%20of%20the%20Evolution%20of%20Quantum%20Systems&rft.jtitle=Doklady.%20Mathematics&rft.au=Gough,%20J.&rft.date=2022-04-01&rft.volume=105&rft.issue=2&rft.spage=92&rft.epage=96&rft.pages=92-96&rft.issn=1064-5624&rft.eissn=1531-8362&rft_id=info:doi/10.1134/S1064562422020107&rft_dat=%3Cproquest_cross%3E2685498450%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685498450&rft_id=info:pmid/&rfr_iscdi=true |