Magnitude cohomology
Magnitude homology was introduced by Hepworth and Willerton in the case of graphs, and was later extended by Leinster and Shulman to metric spaces and enriched categories. Here we introduce the dual theory, magnitude cohomology, which we equip with the structure of an associative unital graded ring....
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2022-08, Vol.301 (4), p.3617-3640 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3640 |
---|---|
container_issue | 4 |
container_start_page | 3617 |
container_title | Mathematische Zeitschrift |
container_volume | 301 |
creator | Hepworth, Richard |
description | Magnitude homology was introduced by Hepworth and Willerton in the case of graphs, and was later extended by Leinster and Shulman to metric spaces and enriched categories. Here we introduce the dual theory, magnitude cohomology, which we equip with the structure of an associative unital graded ring. Our first main result is a ‘recovery theorem’ showing that the magnitude cohomology ring of a finite metric space completely determines the space itself. The magnitude cohomology ring is non-commutative in general, for example when applied to finite metric spaces, but in some settings it is commutative, for example when applied to ordinary categories. Our second main result explains this situation by proving that the magnitude cohomology ring of an enriched category is graded-commutative whenever the enriching category is cartesian. We end the paper by giving complete computations of magnitude cohomology rings for several large classes of graphs. |
doi_str_mv | 10.1007/s00209-022-03013-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2685498228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2685498228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-7d89286a59bca93e9ccac7c33db66dac2502a084a6493444e417f0022420c2453</originalsourceid><addsrcrecordid>eNp9j71PwzAUxC0EEqGwMTEhMRuen-3YHlHFl1TEArPlOk5o1cbFTob-97gEiY3pDXe_u3eEXDG4ZQDqLgMgGAqIFDgwTvURqZjgSJlGfkyqoksqtRKn5CznNUARlajI5avr-tUwNuHax8-4jZvY7c_JSes2OVz83hn5eHx4nz_TxdvTy_x-QT2v-UBVow3q2kmz9M7wYLx3XnnOm2VdN86jBHSghauF4UKIIJhqyyMoEDwKyWfkZsrdpfg1hjzYdRxTXyot1loKoxF1ceHk8inmnEJrd2m1dWlvGdjDejuttyXZ_qy3B4hPUC7mvgvpL_of6hu0H1np</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685498228</pqid></control><display><type>article</type><title>Magnitude cohomology</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hepworth, Richard</creator><creatorcontrib>Hepworth, Richard</creatorcontrib><description>Magnitude homology was introduced by Hepworth and Willerton in the case of graphs, and was later extended by Leinster and Shulman to metric spaces and enriched categories. Here we introduce the dual theory, magnitude cohomology, which we equip with the structure of an associative unital graded ring. Our first main result is a ‘recovery theorem’ showing that the magnitude cohomology ring of a finite metric space completely determines the space itself. The magnitude cohomology ring is non-commutative in general, for example when applied to finite metric spaces, but in some settings it is commutative, for example when applied to ordinary categories. Our second main result explains this situation by proving that the magnitude cohomology ring of an enriched category is graded-commutative whenever the enriching category is cartesian. We end the paper by giving complete computations of magnitude cohomology rings for several large classes of graphs.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-022-03013-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Cartesian coordinates ; Enrichment ; Graphs ; Homology ; Mathematics ; Mathematics and Statistics ; Metric space ; Rings (mathematics)</subject><ispartof>Mathematische Zeitschrift, 2022-08, Vol.301 (4), p.3617-3640</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-7d89286a59bca93e9ccac7c33db66dac2502a084a6493444e417f0022420c2453</citedby><cites>FETCH-LOGICAL-c363t-7d89286a59bca93e9ccac7c33db66dac2502a084a6493444e417f0022420c2453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00209-022-03013-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00209-022-03013-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Hepworth, Richard</creatorcontrib><title>Magnitude cohomology</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>Magnitude homology was introduced by Hepworth and Willerton in the case of graphs, and was later extended by Leinster and Shulman to metric spaces and enriched categories. Here we introduce the dual theory, magnitude cohomology, which we equip with the structure of an associative unital graded ring. Our first main result is a ‘recovery theorem’ showing that the magnitude cohomology ring of a finite metric space completely determines the space itself. The magnitude cohomology ring is non-commutative in general, for example when applied to finite metric spaces, but in some settings it is commutative, for example when applied to ordinary categories. Our second main result explains this situation by proving that the magnitude cohomology ring of an enriched category is graded-commutative whenever the enriching category is cartesian. We end the paper by giving complete computations of magnitude cohomology rings for several large classes of graphs.</description><subject>Cartesian coordinates</subject><subject>Enrichment</subject><subject>Graphs</subject><subject>Homology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Metric space</subject><subject>Rings (mathematics)</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9j71PwzAUxC0EEqGwMTEhMRuen-3YHlHFl1TEArPlOk5o1cbFTob-97gEiY3pDXe_u3eEXDG4ZQDqLgMgGAqIFDgwTvURqZjgSJlGfkyqoksqtRKn5CznNUARlajI5avr-tUwNuHax8-4jZvY7c_JSes2OVz83hn5eHx4nz_TxdvTy_x-QT2v-UBVow3q2kmz9M7wYLx3XnnOm2VdN86jBHSghauF4UKIIJhqyyMoEDwKyWfkZsrdpfg1hjzYdRxTXyot1loKoxF1ceHk8inmnEJrd2m1dWlvGdjDejuttyXZ_qy3B4hPUC7mvgvpL_of6hu0H1np</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Hepworth, Richard</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220801</creationdate><title>Magnitude cohomology</title><author>Hepworth, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-7d89286a59bca93e9ccac7c33db66dac2502a084a6493444e417f0022420c2453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cartesian coordinates</topic><topic>Enrichment</topic><topic>Graphs</topic><topic>Homology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Metric space</topic><topic>Rings (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hepworth, Richard</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hepworth, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnitude cohomology</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>301</volume><issue>4</issue><spage>3617</spage><epage>3640</epage><pages>3617-3640</pages><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>Magnitude homology was introduced by Hepworth and Willerton in the case of graphs, and was later extended by Leinster and Shulman to metric spaces and enriched categories. Here we introduce the dual theory, magnitude cohomology, which we equip with the structure of an associative unital graded ring. Our first main result is a ‘recovery theorem’ showing that the magnitude cohomology ring of a finite metric space completely determines the space itself. The magnitude cohomology ring is non-commutative in general, for example when applied to finite metric spaces, but in some settings it is commutative, for example when applied to ordinary categories. Our second main result explains this situation by proving that the magnitude cohomology ring of an enriched category is graded-commutative whenever the enriching category is cartesian. We end the paper by giving complete computations of magnitude cohomology rings for several large classes of graphs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-022-03013-8</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5874 |
ispartof | Mathematische Zeitschrift, 2022-08, Vol.301 (4), p.3617-3640 |
issn | 0025-5874 1432-1823 |
language | eng |
recordid | cdi_proquest_journals_2685498228 |
source | SpringerLink Journals - AutoHoldings |
subjects | Cartesian coordinates Enrichment Graphs Homology Mathematics Mathematics and Statistics Metric space Rings (mathematics) |
title | Magnitude cohomology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnitude%20cohomology&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Hepworth,%20Richard&rft.date=2022-08-01&rft.volume=301&rft.issue=4&rft.spage=3617&rft.epage=3640&rft.pages=3617-3640&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-022-03013-8&rft_dat=%3Cproquest_cross%3E2685498228%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685498228&rft_id=info:pmid/&rfr_iscdi=true |