Magnitude cohomology

Magnitude homology was introduced by Hepworth and Willerton in the case of graphs, and was later extended by Leinster and Shulman to metric spaces and enriched categories. Here we introduce the dual theory, magnitude cohomology, which we equip with the structure of an associative unital graded ring....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2022-08, Vol.301 (4), p.3617-3640
1. Verfasser: Hepworth, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3640
container_issue 4
container_start_page 3617
container_title Mathematische Zeitschrift
container_volume 301
creator Hepworth, Richard
description Magnitude homology was introduced by Hepworth and Willerton in the case of graphs, and was later extended by Leinster and Shulman to metric spaces and enriched categories. Here we introduce the dual theory, magnitude cohomology, which we equip with the structure of an associative unital graded ring. Our first main result is a ‘recovery theorem’ showing that the magnitude cohomology ring of a finite metric space completely determines the space itself. The magnitude cohomology ring is non-commutative in general, for example when applied to finite metric spaces, but in some settings it is commutative, for example when applied to ordinary categories. Our second main result explains this situation by proving that the magnitude cohomology ring of an enriched category is graded-commutative whenever the enriching category is cartesian. We end the paper by giving complete computations of magnitude cohomology rings for several large classes of graphs.
doi_str_mv 10.1007/s00209-022-03013-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2685498228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2685498228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-7d89286a59bca93e9ccac7c33db66dac2502a084a6493444e417f0022420c2453</originalsourceid><addsrcrecordid>eNp9j71PwzAUxC0EEqGwMTEhMRuen-3YHlHFl1TEArPlOk5o1cbFTob-97gEiY3pDXe_u3eEXDG4ZQDqLgMgGAqIFDgwTvURqZjgSJlGfkyqoksqtRKn5CznNUARlajI5avr-tUwNuHax8-4jZvY7c_JSes2OVz83hn5eHx4nz_TxdvTy_x-QT2v-UBVow3q2kmz9M7wYLx3XnnOm2VdN86jBHSghauF4UKIIJhqyyMoEDwKyWfkZsrdpfg1hjzYdRxTXyot1loKoxF1ceHk8inmnEJrd2m1dWlvGdjDejuttyXZ_qy3B4hPUC7mvgvpL_of6hu0H1np</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685498228</pqid></control><display><type>article</type><title>Magnitude cohomology</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hepworth, Richard</creator><creatorcontrib>Hepworth, Richard</creatorcontrib><description>Magnitude homology was introduced by Hepworth and Willerton in the case of graphs, and was later extended by Leinster and Shulman to metric spaces and enriched categories. Here we introduce the dual theory, magnitude cohomology, which we equip with the structure of an associative unital graded ring. Our first main result is a ‘recovery theorem’ showing that the magnitude cohomology ring of a finite metric space completely determines the space itself. The magnitude cohomology ring is non-commutative in general, for example when applied to finite metric spaces, but in some settings it is commutative, for example when applied to ordinary categories. Our second main result explains this situation by proving that the magnitude cohomology ring of an enriched category is graded-commutative whenever the enriching category is cartesian. We end the paper by giving complete computations of magnitude cohomology rings for several large classes of graphs.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-022-03013-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Cartesian coordinates ; Enrichment ; Graphs ; Homology ; Mathematics ; Mathematics and Statistics ; Metric space ; Rings (mathematics)</subject><ispartof>Mathematische Zeitschrift, 2022-08, Vol.301 (4), p.3617-3640</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-7d89286a59bca93e9ccac7c33db66dac2502a084a6493444e417f0022420c2453</citedby><cites>FETCH-LOGICAL-c363t-7d89286a59bca93e9ccac7c33db66dac2502a084a6493444e417f0022420c2453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00209-022-03013-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00209-022-03013-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Hepworth, Richard</creatorcontrib><title>Magnitude cohomology</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>Magnitude homology was introduced by Hepworth and Willerton in the case of graphs, and was later extended by Leinster and Shulman to metric spaces and enriched categories. Here we introduce the dual theory, magnitude cohomology, which we equip with the structure of an associative unital graded ring. Our first main result is a ‘recovery theorem’ showing that the magnitude cohomology ring of a finite metric space completely determines the space itself. The magnitude cohomology ring is non-commutative in general, for example when applied to finite metric spaces, but in some settings it is commutative, for example when applied to ordinary categories. Our second main result explains this situation by proving that the magnitude cohomology ring of an enriched category is graded-commutative whenever the enriching category is cartesian. We end the paper by giving complete computations of magnitude cohomology rings for several large classes of graphs.</description><subject>Cartesian coordinates</subject><subject>Enrichment</subject><subject>Graphs</subject><subject>Homology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Metric space</subject><subject>Rings (mathematics)</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9j71PwzAUxC0EEqGwMTEhMRuen-3YHlHFl1TEArPlOk5o1cbFTob-97gEiY3pDXe_u3eEXDG4ZQDqLgMgGAqIFDgwTvURqZjgSJlGfkyqoksqtRKn5CznNUARlajI5avr-tUwNuHax8-4jZvY7c_JSes2OVz83hn5eHx4nz_TxdvTy_x-QT2v-UBVow3q2kmz9M7wYLx3XnnOm2VdN86jBHSghauF4UKIIJhqyyMoEDwKyWfkZsrdpfg1hjzYdRxTXyot1loKoxF1ceHk8inmnEJrd2m1dWlvGdjDejuttyXZ_qy3B4hPUC7mvgvpL_of6hu0H1np</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Hepworth, Richard</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220801</creationdate><title>Magnitude cohomology</title><author>Hepworth, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-7d89286a59bca93e9ccac7c33db66dac2502a084a6493444e417f0022420c2453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cartesian coordinates</topic><topic>Enrichment</topic><topic>Graphs</topic><topic>Homology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Metric space</topic><topic>Rings (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hepworth, Richard</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hepworth, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnitude cohomology</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>301</volume><issue>4</issue><spage>3617</spage><epage>3640</epage><pages>3617-3640</pages><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>Magnitude homology was introduced by Hepworth and Willerton in the case of graphs, and was later extended by Leinster and Shulman to metric spaces and enriched categories. Here we introduce the dual theory, magnitude cohomology, which we equip with the structure of an associative unital graded ring. Our first main result is a ‘recovery theorem’ showing that the magnitude cohomology ring of a finite metric space completely determines the space itself. The magnitude cohomology ring is non-commutative in general, for example when applied to finite metric spaces, but in some settings it is commutative, for example when applied to ordinary categories. Our second main result explains this situation by proving that the magnitude cohomology ring of an enriched category is graded-commutative whenever the enriching category is cartesian. We end the paper by giving complete computations of magnitude cohomology rings for several large classes of graphs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-022-03013-8</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5874
ispartof Mathematische Zeitschrift, 2022-08, Vol.301 (4), p.3617-3640
issn 0025-5874
1432-1823
language eng
recordid cdi_proquest_journals_2685498228
source SpringerLink Journals - AutoHoldings
subjects Cartesian coordinates
Enrichment
Graphs
Homology
Mathematics
Mathematics and Statistics
Metric space
Rings (mathematics)
title Magnitude cohomology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnitude%20cohomology&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Hepworth,%20Richard&rft.date=2022-08-01&rft.volume=301&rft.issue=4&rft.spage=3617&rft.epage=3640&rft.pages=3617-3640&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-022-03013-8&rft_dat=%3Cproquest_cross%3E2685498228%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685498228&rft_id=info:pmid/&rfr_iscdi=true