Quasi‐Solid Electrolyte Design and In Situ Construction of Dual Electrolyte/Electrode Interphases for High‐Stability Zinc Metal Battery

Interfacial stability and compatibility in rechargeable metal batteries (RMBs) is still made difficult by deterioration under electrochemical dynamic operation due to the activeness of the metallic anodes and their spontaneous reaction with the liquid electrolyte. Herein, robust quasi‐solid zinc met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2022-07, Vol.12 (25), p.n/a
Hauptverfasser: Guo, Shan, Qin, Liping, Hu, Chao, Li, Lanyan, Luo, Zhigao, Fang, Guozhao, Liang, Shuquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 25
container_start_page
container_title Advanced energy materials
container_volume 12
creator Guo, Shan
Qin, Liping
Hu, Chao
Li, Lanyan
Luo, Zhigao
Fang, Guozhao
Liang, Shuquan
description Interfacial stability and compatibility in rechargeable metal batteries (RMBs) is still made difficult by deterioration under electrochemical dynamic operation due to the activeness of the metallic anodes and their spontaneous reaction with the liquid electrolyte. Herein, robust quasi‐solid zinc metal batteries enabled by in situ formation of stable dual electrolyte/electrode interphases with an electrochemical stability during cycling are reported. The quasi‐solid electrolyte sufficiently transfers the zinc ions due to the construction of the unobstructed ions transportation network composed of intergranular liquid phase migration and interlayer diffusion. The distinctive in situ formation of dual interphases, specially with heterojunction charge aggregation, cleverly settles the issues of interfacial compatibility, which achieves a stable Zn2+ plating/stripping of more than 3000 h and far exceeding the transient 250 h of its liquid counterpart. This design strategy for quasi‐solid electrolytes is expected to advance the development of the quasi‐solid battery field. A robust quasi‐solid zinc metal battery enabled by in situ formation of dual electrolyte/electrode interphases is reported. The distinctive in situ formation of dual interphases can cleverly settle the issues of interfacial compatibility.
doi_str_mv 10.1002/aenm.202200730
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2685305659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2685305659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3170-e78acf54620e99c1817acf67a41b9d59c6c8b19e74b0d3ea5d3259503aba2c933</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EElXpymyJOa1_4iQeS1topRaECgtL5DhO6yqNi-0IZWNn4Rl5ElK1Kmzc5d4rne8c6QBwjVEfI0QGQlXbPkGEIBRTdAY6OMJhECUhOj_dlFyCnnMb1E7IMaK0Az6fauH098fX0pQ6h5NSSW9N2XgFx8rpVQVFlcNZBZfa13BkKudtLb02FTQFHNei_MsMjneuWsQru1sLpxwsjIVTvVrvY7zIdKl9A191JeFC-dbhVvhW3FyBi0KUTvWOuwte7ibPo2kwf7yfjYbzQFIco0DFiZAFCyOCFOcSJzhu_ygWIc54zriMZJJhruIwQzlVguWUMM4QFZkgklPaBTcH3501b7VyPt2Y2lZtZEqihFHEIsZbVf-gktY4Z1WR7qzeCtukGKX7ztN95-mp8xbgB-Bdl6r5R50OJw-LX_YHezqJGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685305659</pqid></control><display><type>article</type><title>Quasi‐Solid Electrolyte Design and In Situ Construction of Dual Electrolyte/Electrode Interphases for High‐Stability Zinc Metal Battery</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Guo, Shan ; Qin, Liping ; Hu, Chao ; Li, Lanyan ; Luo, Zhigao ; Fang, Guozhao ; Liang, Shuquan</creator><creatorcontrib>Guo, Shan ; Qin, Liping ; Hu, Chao ; Li, Lanyan ; Luo, Zhigao ; Fang, Guozhao ; Liang, Shuquan</creatorcontrib><description>Interfacial stability and compatibility in rechargeable metal batteries (RMBs) is still made difficult by deterioration under electrochemical dynamic operation due to the activeness of the metallic anodes and their spontaneous reaction with the liquid electrolyte. Herein, robust quasi‐solid zinc metal batteries enabled by in situ formation of stable dual electrolyte/electrode interphases with an electrochemical stability during cycling are reported. The quasi‐solid electrolyte sufficiently transfers the zinc ions due to the construction of the unobstructed ions transportation network composed of intergranular liquid phase migration and interlayer diffusion. The distinctive in situ formation of dual interphases, specially with heterojunction charge aggregation, cleverly settles the issues of interfacial compatibility, which achieves a stable Zn2+ plating/stripping of more than 3000 h and far exceeding the transient 250 h of its liquid counterpart. This design strategy for quasi‐solid electrolytes is expected to advance the development of the quasi‐solid battery field. A robust quasi‐solid zinc metal battery enabled by in situ formation of dual electrolyte/electrode interphases is reported. The distinctive in situ formation of dual interphases can cleverly settle the issues of interfacial compatibility.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202200730</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Compatibility ; electrode protection ; Electrodes ; Heterojunctions ; Interface stability ; interfacial compatibility ; Interlayers ; interphases ; Liquid phases ; Molten salt electrolytes ; quasi‐solid electrolytes ; Rechargeable batteries ; Solid electrolytes ; Transportation networks ; Zinc ; Zn metal batteries</subject><ispartof>Advanced energy materials, 2022-07, Vol.12 (25), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3170-e78acf54620e99c1817acf67a41b9d59c6c8b19e74b0d3ea5d3259503aba2c933</citedby><cites>FETCH-LOGICAL-c3170-e78acf54620e99c1817acf67a41b9d59c6c8b19e74b0d3ea5d3259503aba2c933</cites><orcidid>0000-0001-9227-5498</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202200730$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202200730$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Guo, Shan</creatorcontrib><creatorcontrib>Qin, Liping</creatorcontrib><creatorcontrib>Hu, Chao</creatorcontrib><creatorcontrib>Li, Lanyan</creatorcontrib><creatorcontrib>Luo, Zhigao</creatorcontrib><creatorcontrib>Fang, Guozhao</creatorcontrib><creatorcontrib>Liang, Shuquan</creatorcontrib><title>Quasi‐Solid Electrolyte Design and In Situ Construction of Dual Electrolyte/Electrode Interphases for High‐Stability Zinc Metal Battery</title><title>Advanced energy materials</title><description>Interfacial stability and compatibility in rechargeable metal batteries (RMBs) is still made difficult by deterioration under electrochemical dynamic operation due to the activeness of the metallic anodes and their spontaneous reaction with the liquid electrolyte. Herein, robust quasi‐solid zinc metal batteries enabled by in situ formation of stable dual electrolyte/electrode interphases with an electrochemical stability during cycling are reported. The quasi‐solid electrolyte sufficiently transfers the zinc ions due to the construction of the unobstructed ions transportation network composed of intergranular liquid phase migration and interlayer diffusion. The distinctive in situ formation of dual interphases, specially with heterojunction charge aggregation, cleverly settles the issues of interfacial compatibility, which achieves a stable Zn2+ plating/stripping of more than 3000 h and far exceeding the transient 250 h of its liquid counterpart. This design strategy for quasi‐solid electrolytes is expected to advance the development of the quasi‐solid battery field. A robust quasi‐solid zinc metal battery enabled by in situ formation of dual electrolyte/electrode interphases is reported. The distinctive in situ formation of dual interphases can cleverly settle the issues of interfacial compatibility.</description><subject>Compatibility</subject><subject>electrode protection</subject><subject>Electrodes</subject><subject>Heterojunctions</subject><subject>Interface stability</subject><subject>interfacial compatibility</subject><subject>Interlayers</subject><subject>interphases</subject><subject>Liquid phases</subject><subject>Molten salt electrolytes</subject><subject>quasi‐solid electrolytes</subject><subject>Rechargeable batteries</subject><subject>Solid electrolytes</subject><subject>Transportation networks</subject><subject>Zinc</subject><subject>Zn metal batteries</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhS0EElXpymyJOa1_4iQeS1topRaECgtL5DhO6yqNi-0IZWNn4Rl5ElK1Kmzc5d4rne8c6QBwjVEfI0QGQlXbPkGEIBRTdAY6OMJhECUhOj_dlFyCnnMb1E7IMaK0Az6fauH098fX0pQ6h5NSSW9N2XgFx8rpVQVFlcNZBZfa13BkKudtLb02FTQFHNei_MsMjneuWsQru1sLpxwsjIVTvVrvY7zIdKl9A191JeFC-dbhVvhW3FyBi0KUTvWOuwte7ibPo2kwf7yfjYbzQFIco0DFiZAFCyOCFOcSJzhu_ygWIc54zriMZJJhruIwQzlVguWUMM4QFZkgklPaBTcH3501b7VyPt2Y2lZtZEqihFHEIsZbVf-gktY4Z1WR7qzeCtukGKX7ztN95-mp8xbgB-Bdl6r5R50OJw-LX_YHezqJGg</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Guo, Shan</creator><creator>Qin, Liping</creator><creator>Hu, Chao</creator><creator>Li, Lanyan</creator><creator>Luo, Zhigao</creator><creator>Fang, Guozhao</creator><creator>Liang, Shuquan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9227-5498</orcidid></search><sort><creationdate>20220701</creationdate><title>Quasi‐Solid Electrolyte Design and In Situ Construction of Dual Electrolyte/Electrode Interphases for High‐Stability Zinc Metal Battery</title><author>Guo, Shan ; Qin, Liping ; Hu, Chao ; Li, Lanyan ; Luo, Zhigao ; Fang, Guozhao ; Liang, Shuquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3170-e78acf54620e99c1817acf67a41b9d59c6c8b19e74b0d3ea5d3259503aba2c933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Compatibility</topic><topic>electrode protection</topic><topic>Electrodes</topic><topic>Heterojunctions</topic><topic>Interface stability</topic><topic>interfacial compatibility</topic><topic>Interlayers</topic><topic>interphases</topic><topic>Liquid phases</topic><topic>Molten salt electrolytes</topic><topic>quasi‐solid electrolytes</topic><topic>Rechargeable batteries</topic><topic>Solid electrolytes</topic><topic>Transportation networks</topic><topic>Zinc</topic><topic>Zn metal batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Shan</creatorcontrib><creatorcontrib>Qin, Liping</creatorcontrib><creatorcontrib>Hu, Chao</creatorcontrib><creatorcontrib>Li, Lanyan</creatorcontrib><creatorcontrib>Luo, Zhigao</creatorcontrib><creatorcontrib>Fang, Guozhao</creatorcontrib><creatorcontrib>Liang, Shuquan</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Shan</au><au>Qin, Liping</au><au>Hu, Chao</au><au>Li, Lanyan</au><au>Luo, Zhigao</au><au>Fang, Guozhao</au><au>Liang, Shuquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi‐Solid Electrolyte Design and In Situ Construction of Dual Electrolyte/Electrode Interphases for High‐Stability Zinc Metal Battery</atitle><jtitle>Advanced energy materials</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>12</volume><issue>25</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Interfacial stability and compatibility in rechargeable metal batteries (RMBs) is still made difficult by deterioration under electrochemical dynamic operation due to the activeness of the metallic anodes and their spontaneous reaction with the liquid electrolyte. Herein, robust quasi‐solid zinc metal batteries enabled by in situ formation of stable dual electrolyte/electrode interphases with an electrochemical stability during cycling are reported. The quasi‐solid electrolyte sufficiently transfers the zinc ions due to the construction of the unobstructed ions transportation network composed of intergranular liquid phase migration and interlayer diffusion. The distinctive in situ formation of dual interphases, specially with heterojunction charge aggregation, cleverly settles the issues of interfacial compatibility, which achieves a stable Zn2+ plating/stripping of more than 3000 h and far exceeding the transient 250 h of its liquid counterpart. This design strategy for quasi‐solid electrolytes is expected to advance the development of the quasi‐solid battery field. A robust quasi‐solid zinc metal battery enabled by in situ formation of dual electrolyte/electrode interphases is reported. The distinctive in situ formation of dual interphases can cleverly settle the issues of interfacial compatibility.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202200730</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9227-5498</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2022-07, Vol.12 (25), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2685305659
source Wiley Online Library Journals Frontfile Complete
subjects Compatibility
electrode protection
Electrodes
Heterojunctions
Interface stability
interfacial compatibility
Interlayers
interphases
Liquid phases
Molten salt electrolytes
quasi‐solid electrolytes
Rechargeable batteries
Solid electrolytes
Transportation networks
Zinc
Zn metal batteries
title Quasi‐Solid Electrolyte Design and In Situ Construction of Dual Electrolyte/Electrode Interphases for High‐Stability Zinc Metal Battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A37%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi%E2%80%90Solid%20Electrolyte%20Design%20and%20In%20Situ%20Construction%20of%20Dual%20Electrolyte/Electrode%20Interphases%20for%20High%E2%80%90Stability%20Zinc%20Metal%20Battery&rft.jtitle=Advanced%20energy%20materials&rft.au=Guo,%20Shan&rft.date=2022-07-01&rft.volume=12&rft.issue=25&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202200730&rft_dat=%3Cproquest_cross%3E2685305659%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685305659&rft_id=info:pmid/&rfr_iscdi=true