Quasi‐Solid Electrolyte Design and In Situ Construction of Dual Electrolyte/Electrode Interphases for High‐Stability Zinc Metal Battery
Interfacial stability and compatibility in rechargeable metal batteries (RMBs) is still made difficult by deterioration under electrochemical dynamic operation due to the activeness of the metallic anodes and their spontaneous reaction with the liquid electrolyte. Herein, robust quasi‐solid zinc met...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2022-07, Vol.12 (25), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 25 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 12 |
creator | Guo, Shan Qin, Liping Hu, Chao Li, Lanyan Luo, Zhigao Fang, Guozhao Liang, Shuquan |
description | Interfacial stability and compatibility in rechargeable metal batteries (RMBs) is still made difficult by deterioration under electrochemical dynamic operation due to the activeness of the metallic anodes and their spontaneous reaction with the liquid electrolyte. Herein, robust quasi‐solid zinc metal batteries enabled by in situ formation of stable dual electrolyte/electrode interphases with an electrochemical stability during cycling are reported. The quasi‐solid electrolyte sufficiently transfers the zinc ions due to the construction of the unobstructed ions transportation network composed of intergranular liquid phase migration and interlayer diffusion. The distinctive in situ formation of dual interphases, specially with heterojunction charge aggregation, cleverly settles the issues of interfacial compatibility, which achieves a stable Zn2+ plating/stripping of more than 3000 h and far exceeding the transient 250 h of its liquid counterpart. This design strategy for quasi‐solid electrolytes is expected to advance the development of the quasi‐solid battery field.
A robust quasi‐solid zinc metal battery enabled by in situ formation of dual electrolyte/electrode interphases is reported. The distinctive in situ formation of dual interphases can cleverly settle the issues of interfacial compatibility. |
doi_str_mv | 10.1002/aenm.202200730 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2685305659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2685305659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3170-e78acf54620e99c1817acf67a41b9d59c6c8b19e74b0d3ea5d3259503aba2c933</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EElXpymyJOa1_4iQeS1topRaECgtL5DhO6yqNi-0IZWNn4Rl5ElK1Kmzc5d4rne8c6QBwjVEfI0QGQlXbPkGEIBRTdAY6OMJhECUhOj_dlFyCnnMb1E7IMaK0Az6fauH098fX0pQ6h5NSSW9N2XgFx8rpVQVFlcNZBZfa13BkKudtLb02FTQFHNei_MsMjneuWsQru1sLpxwsjIVTvVrvY7zIdKl9A191JeFC-dbhVvhW3FyBi0KUTvWOuwte7ibPo2kwf7yfjYbzQFIco0DFiZAFCyOCFOcSJzhu_ygWIc54zriMZJJhruIwQzlVguWUMM4QFZkgklPaBTcH3501b7VyPt2Y2lZtZEqihFHEIsZbVf-gktY4Z1WR7qzeCtukGKX7ztN95-mp8xbgB-Bdl6r5R50OJw-LX_YHezqJGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685305659</pqid></control><display><type>article</type><title>Quasi‐Solid Electrolyte Design and In Situ Construction of Dual Electrolyte/Electrode Interphases for High‐Stability Zinc Metal Battery</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Guo, Shan ; Qin, Liping ; Hu, Chao ; Li, Lanyan ; Luo, Zhigao ; Fang, Guozhao ; Liang, Shuquan</creator><creatorcontrib>Guo, Shan ; Qin, Liping ; Hu, Chao ; Li, Lanyan ; Luo, Zhigao ; Fang, Guozhao ; Liang, Shuquan</creatorcontrib><description>Interfacial stability and compatibility in rechargeable metal batteries (RMBs) is still made difficult by deterioration under electrochemical dynamic operation due to the activeness of the metallic anodes and their spontaneous reaction with the liquid electrolyte. Herein, robust quasi‐solid zinc metal batteries enabled by in situ formation of stable dual electrolyte/electrode interphases with an electrochemical stability during cycling are reported. The quasi‐solid electrolyte sufficiently transfers the zinc ions due to the construction of the unobstructed ions transportation network composed of intergranular liquid phase migration and interlayer diffusion. The distinctive in situ formation of dual interphases, specially with heterojunction charge aggregation, cleverly settles the issues of interfacial compatibility, which achieves a stable Zn2+ plating/stripping of more than 3000 h and far exceeding the transient 250 h of its liquid counterpart. This design strategy for quasi‐solid electrolytes is expected to advance the development of the quasi‐solid battery field.
A robust quasi‐solid zinc metal battery enabled by in situ formation of dual electrolyte/electrode interphases is reported. The distinctive in situ formation of dual interphases can cleverly settle the issues of interfacial compatibility.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202200730</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Compatibility ; electrode protection ; Electrodes ; Heterojunctions ; Interface stability ; interfacial compatibility ; Interlayers ; interphases ; Liquid phases ; Molten salt electrolytes ; quasi‐solid electrolytes ; Rechargeable batteries ; Solid electrolytes ; Transportation networks ; Zinc ; Zn metal batteries</subject><ispartof>Advanced energy materials, 2022-07, Vol.12 (25), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3170-e78acf54620e99c1817acf67a41b9d59c6c8b19e74b0d3ea5d3259503aba2c933</citedby><cites>FETCH-LOGICAL-c3170-e78acf54620e99c1817acf67a41b9d59c6c8b19e74b0d3ea5d3259503aba2c933</cites><orcidid>0000-0001-9227-5498</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202200730$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202200730$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Guo, Shan</creatorcontrib><creatorcontrib>Qin, Liping</creatorcontrib><creatorcontrib>Hu, Chao</creatorcontrib><creatorcontrib>Li, Lanyan</creatorcontrib><creatorcontrib>Luo, Zhigao</creatorcontrib><creatorcontrib>Fang, Guozhao</creatorcontrib><creatorcontrib>Liang, Shuquan</creatorcontrib><title>Quasi‐Solid Electrolyte Design and In Situ Construction of Dual Electrolyte/Electrode Interphases for High‐Stability Zinc Metal Battery</title><title>Advanced energy materials</title><description>Interfacial stability and compatibility in rechargeable metal batteries (RMBs) is still made difficult by deterioration under electrochemical dynamic operation due to the activeness of the metallic anodes and their spontaneous reaction with the liquid electrolyte. Herein, robust quasi‐solid zinc metal batteries enabled by in situ formation of stable dual electrolyte/electrode interphases with an electrochemical stability during cycling are reported. The quasi‐solid electrolyte sufficiently transfers the zinc ions due to the construction of the unobstructed ions transportation network composed of intergranular liquid phase migration and interlayer diffusion. The distinctive in situ formation of dual interphases, specially with heterojunction charge aggregation, cleverly settles the issues of interfacial compatibility, which achieves a stable Zn2+ plating/stripping of more than 3000 h and far exceeding the transient 250 h of its liquid counterpart. This design strategy for quasi‐solid electrolytes is expected to advance the development of the quasi‐solid battery field.
A robust quasi‐solid zinc metal battery enabled by in situ formation of dual electrolyte/electrode interphases is reported. The distinctive in situ formation of dual interphases can cleverly settle the issues of interfacial compatibility.</description><subject>Compatibility</subject><subject>electrode protection</subject><subject>Electrodes</subject><subject>Heterojunctions</subject><subject>Interface stability</subject><subject>interfacial compatibility</subject><subject>Interlayers</subject><subject>interphases</subject><subject>Liquid phases</subject><subject>Molten salt electrolytes</subject><subject>quasi‐solid electrolytes</subject><subject>Rechargeable batteries</subject><subject>Solid electrolytes</subject><subject>Transportation networks</subject><subject>Zinc</subject><subject>Zn metal batteries</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhS0EElXpymyJOa1_4iQeS1topRaECgtL5DhO6yqNi-0IZWNn4Rl5ElK1Kmzc5d4rne8c6QBwjVEfI0QGQlXbPkGEIBRTdAY6OMJhECUhOj_dlFyCnnMb1E7IMaK0Az6fauH098fX0pQ6h5NSSW9N2XgFx8rpVQVFlcNZBZfa13BkKudtLb02FTQFHNei_MsMjneuWsQru1sLpxwsjIVTvVrvY7zIdKl9A191JeFC-dbhVvhW3FyBi0KUTvWOuwte7ibPo2kwf7yfjYbzQFIco0DFiZAFCyOCFOcSJzhu_ygWIc54zriMZJJhruIwQzlVguWUMM4QFZkgklPaBTcH3501b7VyPt2Y2lZtZEqihFHEIsZbVf-gktY4Z1WR7qzeCtukGKX7ztN95-mp8xbgB-Bdl6r5R50OJw-LX_YHezqJGg</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Guo, Shan</creator><creator>Qin, Liping</creator><creator>Hu, Chao</creator><creator>Li, Lanyan</creator><creator>Luo, Zhigao</creator><creator>Fang, Guozhao</creator><creator>Liang, Shuquan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9227-5498</orcidid></search><sort><creationdate>20220701</creationdate><title>Quasi‐Solid Electrolyte Design and In Situ Construction of Dual Electrolyte/Electrode Interphases for High‐Stability Zinc Metal Battery</title><author>Guo, Shan ; Qin, Liping ; Hu, Chao ; Li, Lanyan ; Luo, Zhigao ; Fang, Guozhao ; Liang, Shuquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3170-e78acf54620e99c1817acf67a41b9d59c6c8b19e74b0d3ea5d3259503aba2c933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Compatibility</topic><topic>electrode protection</topic><topic>Electrodes</topic><topic>Heterojunctions</topic><topic>Interface stability</topic><topic>interfacial compatibility</topic><topic>Interlayers</topic><topic>interphases</topic><topic>Liquid phases</topic><topic>Molten salt electrolytes</topic><topic>quasi‐solid electrolytes</topic><topic>Rechargeable batteries</topic><topic>Solid electrolytes</topic><topic>Transportation networks</topic><topic>Zinc</topic><topic>Zn metal batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Shan</creatorcontrib><creatorcontrib>Qin, Liping</creatorcontrib><creatorcontrib>Hu, Chao</creatorcontrib><creatorcontrib>Li, Lanyan</creatorcontrib><creatorcontrib>Luo, Zhigao</creatorcontrib><creatorcontrib>Fang, Guozhao</creatorcontrib><creatorcontrib>Liang, Shuquan</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Shan</au><au>Qin, Liping</au><au>Hu, Chao</au><au>Li, Lanyan</au><au>Luo, Zhigao</au><au>Fang, Guozhao</au><au>Liang, Shuquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi‐Solid Electrolyte Design and In Situ Construction of Dual Electrolyte/Electrode Interphases for High‐Stability Zinc Metal Battery</atitle><jtitle>Advanced energy materials</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>12</volume><issue>25</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Interfacial stability and compatibility in rechargeable metal batteries (RMBs) is still made difficult by deterioration under electrochemical dynamic operation due to the activeness of the metallic anodes and their spontaneous reaction with the liquid electrolyte. Herein, robust quasi‐solid zinc metal batteries enabled by in situ formation of stable dual electrolyte/electrode interphases with an electrochemical stability during cycling are reported. The quasi‐solid electrolyte sufficiently transfers the zinc ions due to the construction of the unobstructed ions transportation network composed of intergranular liquid phase migration and interlayer diffusion. The distinctive in situ formation of dual interphases, specially with heterojunction charge aggregation, cleverly settles the issues of interfacial compatibility, which achieves a stable Zn2+ plating/stripping of more than 3000 h and far exceeding the transient 250 h of its liquid counterpart. This design strategy for quasi‐solid electrolytes is expected to advance the development of the quasi‐solid battery field.
A robust quasi‐solid zinc metal battery enabled by in situ formation of dual electrolyte/electrode interphases is reported. The distinctive in situ formation of dual interphases can cleverly settle the issues of interfacial compatibility.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202200730</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9227-5498</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2022-07, Vol.12 (25), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2685305659 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Compatibility electrode protection Electrodes Heterojunctions Interface stability interfacial compatibility Interlayers interphases Liquid phases Molten salt electrolytes quasi‐solid electrolytes Rechargeable batteries Solid electrolytes Transportation networks Zinc Zn metal batteries |
title | Quasi‐Solid Electrolyte Design and In Situ Construction of Dual Electrolyte/Electrode Interphases for High‐Stability Zinc Metal Battery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A37%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi%E2%80%90Solid%20Electrolyte%20Design%20and%20In%20Situ%20Construction%20of%20Dual%20Electrolyte/Electrode%20Interphases%20for%20High%E2%80%90Stability%20Zinc%20Metal%20Battery&rft.jtitle=Advanced%20energy%20materials&rft.au=Guo,%20Shan&rft.date=2022-07-01&rft.volume=12&rft.issue=25&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202200730&rft_dat=%3Cproquest_cross%3E2685305659%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685305659&rft_id=info:pmid/&rfr_iscdi=true |