TCAD augmented generative adversarial network for hot-spot detection and mask-layout optimization in a large area HARC etching process
Cost-effective vertical etching of plug holes and word lines is crucial in enhancing 3D NAND device manufacturability. Even though multiscale technology computer-aided design (TCAD) methodology is suitable for effectively predicting etching processes and optimizing recipes, it is highly time-consumi...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2022-07, Vol.29 (7) |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 29 |
creator | Kwon, Hyoungcheol Huh, Hyunsuk Seo, Hwiwon Han, Songhee Won, Imhee Sue, Jiwoong Oh, Dongyean Iza, Felipe Lee, Seungchul Park, Sung Kye Cha, Seonyong |
description | Cost-effective vertical etching of plug holes and word lines is crucial in enhancing 3D NAND device manufacturability. Even though multiscale technology computer-aided design (TCAD) methodology is suitable for effectively predicting etching processes and optimizing recipes, it is highly time-consuming. This article demonstrates that our deep learning platform called TCAD-augmented Generative Adversarial Network can reduce the computational load by 2 600 000 times. In addition, because well-calibrated TCAD data based on physical and chemical mutual reactions are used to train the platform, the etching profile can be predicted with the same accuracy as TCAD-only even when the actual experimental data are scarce. This platform opens up new applications, such as hot spot detection and mask layout optimization, in a chip-level area of 3D NAND fabrication. |
doi_str_mv | 10.1063/5.0093076 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2685185254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2685185254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-4fff944fadeb76387801d5e0b4847f5c395e3746fe5de0b4d679217f71e762a53</originalsourceid><addsrcrecordid>eNqdkEtLw0AUhYMoWKsL_8GAK4XUSTKPZFnqo0JBkAruwjRzJ502ycSZSaX-AH-36QPcu7qXez7O4Z4guI7wKMIsuacjjLMEc3YSDCKcZiFnnJzudo5DxsjHeXDh3ApjTBhNB8HPfDJ-QKIra2g8SFRCA1Z4vQEk5AasE1aLCjXgv4xdI2UsWhofutZ4JMFD4bVpkGgkqoVbh5XYms4j03pd62-xF3Wvo0rYsre0INB0_DZB4IulbkrUWlOAc5fBmRKVg6vjHAbvT4_zyTScvT6_TMazsEhY7EOilMoIUULCgrMk5SmOJAW8ICnhihZJRiHhhCmgcneVjGdxxBWPgLNY0GQY3Bx8-9zPDpzPV6azTR-ZxyylUUpjSnrq9kAV1jhnQeWt1bWw2zzC-a7mnObHmnv27sC6Qvv9w_-DN8b-gXkrVfILyM6M-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685185254</pqid></control><display><type>article</type><title>TCAD augmented generative adversarial network for hot-spot detection and mask-layout optimization in a large area HARC etching process</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kwon, Hyoungcheol ; Huh, Hyunsuk ; Seo, Hwiwon ; Han, Songhee ; Won, Imhee ; Sue, Jiwoong ; Oh, Dongyean ; Iza, Felipe ; Lee, Seungchul ; Park, Sung Kye ; Cha, Seonyong</creator><creatorcontrib>Kwon, Hyoungcheol ; Huh, Hyunsuk ; Seo, Hwiwon ; Han, Songhee ; Won, Imhee ; Sue, Jiwoong ; Oh, Dongyean ; Iza, Felipe ; Lee, Seungchul ; Park, Sung Kye ; Cha, Seonyong</creatorcontrib><description>Cost-effective vertical etching of plug holes and word lines is crucial in enhancing 3D NAND device manufacturability. Even though multiscale technology computer-aided design (TCAD) methodology is suitable for effectively predicting etching processes and optimizing recipes, it is highly time-consuming. This article demonstrates that our deep learning platform called TCAD-augmented Generative Adversarial Network can reduce the computational load by 2 600 000 times. In addition, because well-calibrated TCAD data based on physical and chemical mutual reactions are used to train the platform, the etching profile can be predicted with the same accuracy as TCAD-only even when the actual experimental data are scarce. This platform opens up new applications, such as hot spot detection and mask layout optimization, in a chip-level area of 3D NAND fabrication.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0093076</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>CAD ; Chemical reactions ; Computer aided design ; Etching ; Generative adversarial networks ; Layouts ; Manufacturability ; Optimization ; Plasma physics</subject><ispartof>Physics of plasmas, 2022-07, Vol.29 (7)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-4fff944fadeb76387801d5e0b4847f5c395e3746fe5de0b4d679217f71e762a53</citedby><cites>FETCH-LOGICAL-c362t-4fff944fadeb76387801d5e0b4847f5c395e3746fe5de0b4d679217f71e762a53</cites><orcidid>0000-0002-8487-5095 ; 0000-0001-8469-3593 ; 0000-0002-4264-5777 ; 0000-0002-1034-1410 ; 0000-0001-8077-5612</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0093076$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids></links><search><creatorcontrib>Kwon, Hyoungcheol</creatorcontrib><creatorcontrib>Huh, Hyunsuk</creatorcontrib><creatorcontrib>Seo, Hwiwon</creatorcontrib><creatorcontrib>Han, Songhee</creatorcontrib><creatorcontrib>Won, Imhee</creatorcontrib><creatorcontrib>Sue, Jiwoong</creatorcontrib><creatorcontrib>Oh, Dongyean</creatorcontrib><creatorcontrib>Iza, Felipe</creatorcontrib><creatorcontrib>Lee, Seungchul</creatorcontrib><creatorcontrib>Park, Sung Kye</creatorcontrib><creatorcontrib>Cha, Seonyong</creatorcontrib><title>TCAD augmented generative adversarial network for hot-spot detection and mask-layout optimization in a large area HARC etching process</title><title>Physics of plasmas</title><description>Cost-effective vertical etching of plug holes and word lines is crucial in enhancing 3D NAND device manufacturability. Even though multiscale technology computer-aided design (TCAD) methodology is suitable for effectively predicting etching processes and optimizing recipes, it is highly time-consuming. This article demonstrates that our deep learning platform called TCAD-augmented Generative Adversarial Network can reduce the computational load by 2 600 000 times. In addition, because well-calibrated TCAD data based on physical and chemical mutual reactions are used to train the platform, the etching profile can be predicted with the same accuracy as TCAD-only even when the actual experimental data are scarce. This platform opens up new applications, such as hot spot detection and mask layout optimization, in a chip-level area of 3D NAND fabrication.</description><subject>CAD</subject><subject>Chemical reactions</subject><subject>Computer aided design</subject><subject>Etching</subject><subject>Generative adversarial networks</subject><subject>Layouts</subject><subject>Manufacturability</subject><subject>Optimization</subject><subject>Plasma physics</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqdkEtLw0AUhYMoWKsL_8GAK4XUSTKPZFnqo0JBkAruwjRzJ502ycSZSaX-AH-36QPcu7qXez7O4Z4guI7wKMIsuacjjLMEc3YSDCKcZiFnnJzudo5DxsjHeXDh3ApjTBhNB8HPfDJ-QKIra2g8SFRCA1Z4vQEk5AasE1aLCjXgv4xdI2UsWhofutZ4JMFD4bVpkGgkqoVbh5XYms4j03pd62-xF3Wvo0rYsre0INB0_DZB4IulbkrUWlOAc5fBmRKVg6vjHAbvT4_zyTScvT6_TMazsEhY7EOilMoIUULCgrMk5SmOJAW8ICnhihZJRiHhhCmgcneVjGdxxBWPgLNY0GQY3Bx8-9zPDpzPV6azTR-ZxyylUUpjSnrq9kAV1jhnQeWt1bWw2zzC-a7mnObHmnv27sC6Qvv9w_-DN8b-gXkrVfILyM6M-Q</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Kwon, Hyoungcheol</creator><creator>Huh, Hyunsuk</creator><creator>Seo, Hwiwon</creator><creator>Han, Songhee</creator><creator>Won, Imhee</creator><creator>Sue, Jiwoong</creator><creator>Oh, Dongyean</creator><creator>Iza, Felipe</creator><creator>Lee, Seungchul</creator><creator>Park, Sung Kye</creator><creator>Cha, Seonyong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8487-5095</orcidid><orcidid>https://orcid.org/0000-0001-8469-3593</orcidid><orcidid>https://orcid.org/0000-0002-4264-5777</orcidid><orcidid>https://orcid.org/0000-0002-1034-1410</orcidid><orcidid>https://orcid.org/0000-0001-8077-5612</orcidid></search><sort><creationdate>202207</creationdate><title>TCAD augmented generative adversarial network for hot-spot detection and mask-layout optimization in a large area HARC etching process</title><author>Kwon, Hyoungcheol ; Huh, Hyunsuk ; Seo, Hwiwon ; Han, Songhee ; Won, Imhee ; Sue, Jiwoong ; Oh, Dongyean ; Iza, Felipe ; Lee, Seungchul ; Park, Sung Kye ; Cha, Seonyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-4fff944fadeb76387801d5e0b4847f5c395e3746fe5de0b4d679217f71e762a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CAD</topic><topic>Chemical reactions</topic><topic>Computer aided design</topic><topic>Etching</topic><topic>Generative adversarial networks</topic><topic>Layouts</topic><topic>Manufacturability</topic><topic>Optimization</topic><topic>Plasma physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Hyoungcheol</creatorcontrib><creatorcontrib>Huh, Hyunsuk</creatorcontrib><creatorcontrib>Seo, Hwiwon</creatorcontrib><creatorcontrib>Han, Songhee</creatorcontrib><creatorcontrib>Won, Imhee</creatorcontrib><creatorcontrib>Sue, Jiwoong</creatorcontrib><creatorcontrib>Oh, Dongyean</creatorcontrib><creatorcontrib>Iza, Felipe</creatorcontrib><creatorcontrib>Lee, Seungchul</creatorcontrib><creatorcontrib>Park, Sung Kye</creatorcontrib><creatorcontrib>Cha, Seonyong</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwon, Hyoungcheol</au><au>Huh, Hyunsuk</au><au>Seo, Hwiwon</au><au>Han, Songhee</au><au>Won, Imhee</au><au>Sue, Jiwoong</au><au>Oh, Dongyean</au><au>Iza, Felipe</au><au>Lee, Seungchul</au><au>Park, Sung Kye</au><au>Cha, Seonyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TCAD augmented generative adversarial network for hot-spot detection and mask-layout optimization in a large area HARC etching process</atitle><jtitle>Physics of plasmas</jtitle><date>2022-07</date><risdate>2022</risdate><volume>29</volume><issue>7</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Cost-effective vertical etching of plug holes and word lines is crucial in enhancing 3D NAND device manufacturability. Even though multiscale technology computer-aided design (TCAD) methodology is suitable for effectively predicting etching processes and optimizing recipes, it is highly time-consuming. This article demonstrates that our deep learning platform called TCAD-augmented Generative Adversarial Network can reduce the computational load by 2 600 000 times. In addition, because well-calibrated TCAD data based on physical and chemical mutual reactions are used to train the platform, the etching profile can be predicted with the same accuracy as TCAD-only even when the actual experimental data are scarce. This platform opens up new applications, such as hot spot detection and mask layout optimization, in a chip-level area of 3D NAND fabrication.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0093076</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8487-5095</orcidid><orcidid>https://orcid.org/0000-0001-8469-3593</orcidid><orcidid>https://orcid.org/0000-0002-4264-5777</orcidid><orcidid>https://orcid.org/0000-0002-1034-1410</orcidid><orcidid>https://orcid.org/0000-0001-8077-5612</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2022-07, Vol.29 (7) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_proquest_journals_2685185254 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | CAD Chemical reactions Computer aided design Etching Generative adversarial networks Layouts Manufacturability Optimization Plasma physics |
title | TCAD augmented generative adversarial network for hot-spot detection and mask-layout optimization in a large area HARC etching process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T01%3A57%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TCAD%20augmented%20generative%20adversarial%20network%20for%20hot-spot%20detection%20and%20mask-layout%20optimization%20in%20a%20large%20area%20HARC%20etching%20process&rft.jtitle=Physics%20of%20plasmas&rft.au=Kwon,%20Hyoungcheol&rft.date=2022-07&rft.volume=29&rft.issue=7&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0093076&rft_dat=%3Cproquest_scita%3E2685185254%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685185254&rft_id=info:pmid/&rfr_iscdi=true |