Neural Network-Based Phase Estimation for Antenna Array Using Radiation Power Pattern
In this paper, a neural network-based inter-element phase estimation method using radiation power pattern of the linear phased array is proposed. To validate the proposed method, a radiation pattern measured in an anechoic chamber is input to the neural network to estimate the initial phase errors,...
Gespeichert in:
Veröffentlicht in: | IEEE antennas and wireless propagation letters 2022-07, Vol.21 (7), p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 7 |
container_start_page | 1 |
container_title | IEEE antennas and wireless propagation letters |
container_volume | 21 |
creator | Iye, Tetsuya Wyk, Pieter van Matsumoto, Takahiro Susukida, Yuki Takaya, Shohei Fujii, Yoshimi |
description | In this paper, a neural network-based inter-element phase estimation method using radiation power pattern of the linear phased array is proposed. To validate the proposed method, a radiation pattern measured in an anechoic chamber is input to the neural network to estimate the initial phase errors, and to confirm practical estimation accuracy. The proposed method requires only single radiation pattern measurement before calibration and no additional measurements only for calibration. This indicates the proposed method is significantly more time-saving, compared to other conventional techniques. Furthermore, we propose a method to suppress the failure rate of estimation by recursively re-inputting patterns into the neural network, and discuss its effectiveness. These results show that the proposed methods useful for phase estimation of the linear array in experiments. |
doi_str_mv | 10.1109/LAWP.2022.3167697 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2685161850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9760077</ieee_id><sourcerecordid>2685161850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-b3e6ce46edea54a59f3ac32f3a2120e22ad1566569662dbec1645217cb39f75e3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jy6H9nZ5hiLX1BqEIvHZZtMNLVu6u6W0n9vQoqXeefwzAzzEHLN2YRzlt3N849iIpgQE8lBQ6ZPyIirdJoorfRp30tIuBDqnFyEsGaMa1ByRJYL3Hm7oQuM-9Z_J_c2YEWLry7oQ4jNj41N62jdepq7iM5ZmntvD3QZGvdJ32zVDETR7tHTwsaI3l2Ss9puAl4dc0yWjw_vs-dk_vr0MsvnSSkAYrKSCCWmgBValVqV1dKWUnRVcMFQCFtxBaAgAxDVCksOqRJclyuZ1VqhHJPbYe_Wt787DNGs25133UkjYKo48KliHcUHqvRtCB5rs_XdY_5gODO9PdPbM709c7TXzdwMMw0i_vOZBsa0ln9hGWsd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685161850</pqid></control><display><type>article</type><title>Neural Network-Based Phase Estimation for Antenna Array Using Radiation Power Pattern</title><source>IEEE Electronic Library (IEL)</source><creator>Iye, Tetsuya ; Wyk, Pieter van ; Matsumoto, Takahiro ; Susukida, Yuki ; Takaya, Shohei ; Fujii, Yoshimi</creator><creatorcontrib>Iye, Tetsuya ; Wyk, Pieter van ; Matsumoto, Takahiro ; Susukida, Yuki ; Takaya, Shohei ; Fujii, Yoshimi</creatorcontrib><description>In this paper, a neural network-based inter-element phase estimation method using radiation power pattern of the linear phased array is proposed. To validate the proposed method, a radiation pattern measured in an anechoic chamber is input to the neural network to estimate the initial phase errors, and to confirm practical estimation accuracy. The proposed method requires only single radiation pattern measurement before calibration and no additional measurements only for calibration. This indicates the proposed method is significantly more time-saving, compared to other conventional techniques. Furthermore, we propose a method to suppress the failure rate of estimation by recursively re-inputting patterns into the neural network, and discuss its effectiveness. These results show that the proposed methods useful for phase estimation of the linear array in experiments.</description><identifier>ISSN: 1536-1225</identifier><identifier>EISSN: 1548-5757</identifier><identifier>DOI: 10.1109/LAWP.2022.3167697</identifier><identifier>CODEN: IAWPA7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anechoic chambers ; Antenna arrays ; Antenna measurements ; Antenna radiation patterns ; Artificial neural networks ; Calibration ; deep learning ; Failure rates ; Linear arrays ; neural network ; Neural networks ; Phased arrays ; Power measurement ; radiation patterns ; Training</subject><ispartof>IEEE antennas and wireless propagation letters, 2022-07, Vol.21 (7), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-b3e6ce46edea54a59f3ac32f3a2120e22ad1566569662dbec1645217cb39f75e3</citedby><cites>FETCH-LOGICAL-c266t-b3e6ce46edea54a59f3ac32f3a2120e22ad1566569662dbec1645217cb39f75e3</cites><orcidid>0000-0001-8541-3207 ; 0000-0001-9013-9388 ; 0000-0001-9816-9936</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9760077$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Iye, Tetsuya</creatorcontrib><creatorcontrib>Wyk, Pieter van</creatorcontrib><creatorcontrib>Matsumoto, Takahiro</creatorcontrib><creatorcontrib>Susukida, Yuki</creatorcontrib><creatorcontrib>Takaya, Shohei</creatorcontrib><creatorcontrib>Fujii, Yoshimi</creatorcontrib><title>Neural Network-Based Phase Estimation for Antenna Array Using Radiation Power Pattern</title><title>IEEE antennas and wireless propagation letters</title><addtitle>LAWP</addtitle><description>In this paper, a neural network-based inter-element phase estimation method using radiation power pattern of the linear phased array is proposed. To validate the proposed method, a radiation pattern measured in an anechoic chamber is input to the neural network to estimate the initial phase errors, and to confirm practical estimation accuracy. The proposed method requires only single radiation pattern measurement before calibration and no additional measurements only for calibration. This indicates the proposed method is significantly more time-saving, compared to other conventional techniques. Furthermore, we propose a method to suppress the failure rate of estimation by recursively re-inputting patterns into the neural network, and discuss its effectiveness. These results show that the proposed methods useful for phase estimation of the linear array in experiments.</description><subject>Anechoic chambers</subject><subject>Antenna arrays</subject><subject>Antenna measurements</subject><subject>Antenna radiation patterns</subject><subject>Artificial neural networks</subject><subject>Calibration</subject><subject>deep learning</subject><subject>Failure rates</subject><subject>Linear arrays</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Phased arrays</subject><subject>Power measurement</subject><subject>radiation patterns</subject><subject>Training</subject><issn>1536-1225</issn><issn>1548-5757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jy6H9nZ5hiLX1BqEIvHZZtMNLVu6u6W0n9vQoqXeefwzAzzEHLN2YRzlt3N849iIpgQE8lBQ6ZPyIirdJoorfRp30tIuBDqnFyEsGaMa1ByRJYL3Hm7oQuM-9Z_J_c2YEWLry7oQ4jNj41N62jdepq7iM5ZmntvD3QZGvdJ32zVDETR7tHTwsaI3l2Ss9puAl4dc0yWjw_vs-dk_vr0MsvnSSkAYrKSCCWmgBValVqV1dKWUnRVcMFQCFtxBaAgAxDVCksOqRJclyuZ1VqhHJPbYe_Wt787DNGs25133UkjYKo48KliHcUHqvRtCB5rs_XdY_5gODO9PdPbM709c7TXzdwMMw0i_vOZBsa0ln9hGWsd</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Iye, Tetsuya</creator><creator>Wyk, Pieter van</creator><creator>Matsumoto, Takahiro</creator><creator>Susukida, Yuki</creator><creator>Takaya, Shohei</creator><creator>Fujii, Yoshimi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8541-3207</orcidid><orcidid>https://orcid.org/0000-0001-9013-9388</orcidid><orcidid>https://orcid.org/0000-0001-9816-9936</orcidid></search><sort><creationdate>20220701</creationdate><title>Neural Network-Based Phase Estimation for Antenna Array Using Radiation Power Pattern</title><author>Iye, Tetsuya ; Wyk, Pieter van ; Matsumoto, Takahiro ; Susukida, Yuki ; Takaya, Shohei ; Fujii, Yoshimi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-b3e6ce46edea54a59f3ac32f3a2120e22ad1566569662dbec1645217cb39f75e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anechoic chambers</topic><topic>Antenna arrays</topic><topic>Antenna measurements</topic><topic>Antenna radiation patterns</topic><topic>Artificial neural networks</topic><topic>Calibration</topic><topic>deep learning</topic><topic>Failure rates</topic><topic>Linear arrays</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Phased arrays</topic><topic>Power measurement</topic><topic>radiation patterns</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Iye, Tetsuya</creatorcontrib><creatorcontrib>Wyk, Pieter van</creatorcontrib><creatorcontrib>Matsumoto, Takahiro</creatorcontrib><creatorcontrib>Susukida, Yuki</creatorcontrib><creatorcontrib>Takaya, Shohei</creatorcontrib><creatorcontrib>Fujii, Yoshimi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE antennas and wireless propagation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iye, Tetsuya</au><au>Wyk, Pieter van</au><au>Matsumoto, Takahiro</au><au>Susukida, Yuki</au><au>Takaya, Shohei</au><au>Fujii, Yoshimi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Network-Based Phase Estimation for Antenna Array Using Radiation Power Pattern</atitle><jtitle>IEEE antennas and wireless propagation letters</jtitle><stitle>LAWP</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>21</volume><issue>7</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1536-1225</issn><eissn>1548-5757</eissn><coden>IAWPA7</coden><abstract>In this paper, a neural network-based inter-element phase estimation method using radiation power pattern of the linear phased array is proposed. To validate the proposed method, a radiation pattern measured in an anechoic chamber is input to the neural network to estimate the initial phase errors, and to confirm practical estimation accuracy. The proposed method requires only single radiation pattern measurement before calibration and no additional measurements only for calibration. This indicates the proposed method is significantly more time-saving, compared to other conventional techniques. Furthermore, we propose a method to suppress the failure rate of estimation by recursively re-inputting patterns into the neural network, and discuss its effectiveness. These results show that the proposed methods useful for phase estimation of the linear array in experiments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LAWP.2022.3167697</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8541-3207</orcidid><orcidid>https://orcid.org/0000-0001-9013-9388</orcidid><orcidid>https://orcid.org/0000-0001-9816-9936</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1536-1225 |
ispartof | IEEE antennas and wireless propagation letters, 2022-07, Vol.21 (7), p.1-1 |
issn | 1536-1225 1548-5757 |
language | eng |
recordid | cdi_proquest_journals_2685161850 |
source | IEEE Electronic Library (IEL) |
subjects | Anechoic chambers Antenna arrays Antenna measurements Antenna radiation patterns Artificial neural networks Calibration deep learning Failure rates Linear arrays neural network Neural networks Phased arrays Power measurement radiation patterns Training |
title | Neural Network-Based Phase Estimation for Antenna Array Using Radiation Power Pattern |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A14%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Network-Based%20Phase%20Estimation%20for%20Antenna%20Array%20Using%20Radiation%20Power%20Pattern&rft.jtitle=IEEE%20antennas%20and%20wireless%20propagation%20letters&rft.au=Iye,%20Tetsuya&rft.date=2022-07-01&rft.volume=21&rft.issue=7&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1536-1225&rft.eissn=1548-5757&rft.coden=IAWPA7&rft_id=info:doi/10.1109/LAWP.2022.3167697&rft_dat=%3Cproquest_ieee_%3E2685161850%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685161850&rft_id=info:pmid/&rft_ieee_id=9760077&rfr_iscdi=true |