Adaptive Learning-based Vehicle-to-vehicle Opportunistic Resource Sharing Framework
With an ever-increasing number of connected devices on roads, it becomes unsustainable to provide nearby specialized execution resources (compute and storage) for servicing innovative applications. Moreover, the vehicular environment being inherently ad hoc and opportunistic, not to mention highly m...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2022-07, Vol.9 (14), p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 14 |
container_start_page | 1 |
container_title | IEEE internet of things journal |
container_volume | 9 |
creator | Chopra, Arpita Rahman, Anis Ur Malik, Asad Waqar Ravana, Sri Devi |
description | With an ever-increasing number of connected devices on roads, it becomes unsustainable to provide nearby specialized execution resources (compute and storage) for servicing innovative applications. Moreover, the vehicular environment being inherently ad hoc and opportunistic, not to mention highly mobile, makes it unsuitable to use traditional cloud computing due to delayed and interrupted services. Thus, there is a possibility to introduce potential collaboration among nearby connected vehicles. However, the underlying decision model for the selection of the most suitable vehicle for task offloading is challenging in such a dynamic environment. In this study, we propose a collaborative vehicular computing framework that adopts online learning for efficient task assignment between local and neighboring computing resources. The underlying workload adaptive task offloading intends to balance out the workload across neighboring vehicles. The framework is compared against three techniques including two adaptive learning techniques in terms of service delay, efficiency, task delivery rate, task failures, and learning regret. The results demonstrate the effectiveness of the proposed resource-sharing network, improving service quality and throughput for servicing innovative intelligent transportation applications. |
doi_str_mv | 10.1109/JIOT.2021.3137264 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2685159606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9657076</ieee_id><sourcerecordid>2685159606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-6ac52d33d3deab65c711481d3e7c5cc1de7debf63b2e430da654d69f0cdd228b3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOOZ-gHhT8DozH02yXo7hdDIYuOltSJNTl7m1Nekm_ntbOsSr8168zzmHB6FbSsaUkuzhZbHajBlhdMwpV0ymF2jAOFM4lZJd_svXaBTjjhDSYoJmcoDWU2fqxp8gWYIJpS8_cG4iuOQdtt7uATcVPvUxWdV1FZpj6WPjbfIKsToGC8l6a0LLJfNgDvBdhc8bdFWYfYTReQ7R2_xxM3vGy9XTYjZdYssy3mBprGCOc8cdmFwKqyhNJ9RxUFZYSx0oB3khec4g5cQZKVIns4JY5xib5HyI7vu9dai-jhAbvWs_KtuTmsmJoCKTRLYt2rdsqGIMUOg6-IMJP5oS3enTnT7d6dNnfS1z1zMeAP76mRSKKMl_AYhbbLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685159606</pqid></control><display><type>article</type><title>Adaptive Learning-based Vehicle-to-vehicle Opportunistic Resource Sharing Framework</title><source>IEEE Electronic Library (IEL)</source><creator>Chopra, Arpita ; Rahman, Anis Ur ; Malik, Asad Waqar ; Ravana, Sri Devi</creator><creatorcontrib>Chopra, Arpita ; Rahman, Anis Ur ; Malik, Asad Waqar ; Ravana, Sri Devi</creatorcontrib><description>With an ever-increasing number of connected devices on roads, it becomes unsustainable to provide nearby specialized execution resources (compute and storage) for servicing innovative applications. Moreover, the vehicular environment being inherently ad hoc and opportunistic, not to mention highly mobile, makes it unsuitable to use traditional cloud computing due to delayed and interrupted services. Thus, there is a possibility to introduce potential collaboration among nearby connected vehicles. However, the underlying decision model for the selection of the most suitable vehicle for task offloading is challenging in such a dynamic environment. In this study, we propose a collaborative vehicular computing framework that adopts online learning for efficient task assignment between local and neighboring computing resources. The underlying workload adaptive task offloading intends to balance out the workload across neighboring vehicles. The framework is compared against three techniques including two adaptive learning techniques in terms of service delay, efficiency, task delivery rate, task failures, and learning regret. The results demonstrate the effectiveness of the proposed resource-sharing network, improving service quality and throughput for servicing innovative intelligent transportation applications.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2021.3137264</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Adaptive learning ; Cloud computing ; Collaboration ; Computation offloading ; Computational modeling ; Delays ; Distance learning ; Internet of Things ; internet of vehicles ; Machine learning ; mobile computing ; Quality of service architectures ; Task analysis ; Task offloading ; Transportation applications ; Vehicles ; Vehicular ad hoc networks ; vehicular network ; Workload ; Workloads</subject><ispartof>IEEE internet of things journal, 2022-07, Vol.9 (14), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-6ac52d33d3deab65c711481d3e7c5cc1de7debf63b2e430da654d69f0cdd228b3</citedby><cites>FETCH-LOGICAL-c293t-6ac52d33d3deab65c711481d3e7c5cc1de7debf63b2e430da654d69f0cdd228b3</cites><orcidid>0000-0003-0026-1000 ; 0000-0002-8306-475X ; 0000-0003-3804-997X ; 0000-0002-5637-9158</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9657076$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9657076$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chopra, Arpita</creatorcontrib><creatorcontrib>Rahman, Anis Ur</creatorcontrib><creatorcontrib>Malik, Asad Waqar</creatorcontrib><creatorcontrib>Ravana, Sri Devi</creatorcontrib><title>Adaptive Learning-based Vehicle-to-vehicle Opportunistic Resource Sharing Framework</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>With an ever-increasing number of connected devices on roads, it becomes unsustainable to provide nearby specialized execution resources (compute and storage) for servicing innovative applications. Moreover, the vehicular environment being inherently ad hoc and opportunistic, not to mention highly mobile, makes it unsuitable to use traditional cloud computing due to delayed and interrupted services. Thus, there is a possibility to introduce potential collaboration among nearby connected vehicles. However, the underlying decision model for the selection of the most suitable vehicle for task offloading is challenging in such a dynamic environment. In this study, we propose a collaborative vehicular computing framework that adopts online learning for efficient task assignment between local and neighboring computing resources. The underlying workload adaptive task offloading intends to balance out the workload across neighboring vehicles. The framework is compared against three techniques including two adaptive learning techniques in terms of service delay, efficiency, task delivery rate, task failures, and learning regret. The results demonstrate the effectiveness of the proposed resource-sharing network, improving service quality and throughput for servicing innovative intelligent transportation applications.</description><subject>Adaptation models</subject><subject>Adaptive learning</subject><subject>Cloud computing</subject><subject>Collaboration</subject><subject>Computation offloading</subject><subject>Computational modeling</subject><subject>Delays</subject><subject>Distance learning</subject><subject>Internet of Things</subject><subject>internet of vehicles</subject><subject>Machine learning</subject><subject>mobile computing</subject><subject>Quality of service architectures</subject><subject>Task analysis</subject><subject>Task offloading</subject><subject>Transportation applications</subject><subject>Vehicles</subject><subject>Vehicular ad hoc networks</subject><subject>vehicular network</subject><subject>Workload</subject><subject>Workloads</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOOZ-gHhT8DozH02yXo7hdDIYuOltSJNTl7m1Nekm_ntbOsSr8168zzmHB6FbSsaUkuzhZbHajBlhdMwpV0ymF2jAOFM4lZJd_svXaBTjjhDSYoJmcoDWU2fqxp8gWYIJpS8_cG4iuOQdtt7uATcVPvUxWdV1FZpj6WPjbfIKsToGC8l6a0LLJfNgDvBdhc8bdFWYfYTReQ7R2_xxM3vGy9XTYjZdYssy3mBprGCOc8cdmFwKqyhNJ9RxUFZYSx0oB3khec4g5cQZKVIns4JY5xib5HyI7vu9dai-jhAbvWs_KtuTmsmJoCKTRLYt2rdsqGIMUOg6-IMJP5oS3enTnT7d6dNnfS1z1zMeAP76mRSKKMl_AYhbbLA</recordid><startdate>20220715</startdate><enddate>20220715</enddate><creator>Chopra, Arpita</creator><creator>Rahman, Anis Ur</creator><creator>Malik, Asad Waqar</creator><creator>Ravana, Sri Devi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0026-1000</orcidid><orcidid>https://orcid.org/0000-0002-8306-475X</orcidid><orcidid>https://orcid.org/0000-0003-3804-997X</orcidid><orcidid>https://orcid.org/0000-0002-5637-9158</orcidid></search><sort><creationdate>20220715</creationdate><title>Adaptive Learning-based Vehicle-to-vehicle Opportunistic Resource Sharing Framework</title><author>Chopra, Arpita ; Rahman, Anis Ur ; Malik, Asad Waqar ; Ravana, Sri Devi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-6ac52d33d3deab65c711481d3e7c5cc1de7debf63b2e430da654d69f0cdd228b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>Adaptive learning</topic><topic>Cloud computing</topic><topic>Collaboration</topic><topic>Computation offloading</topic><topic>Computational modeling</topic><topic>Delays</topic><topic>Distance learning</topic><topic>Internet of Things</topic><topic>internet of vehicles</topic><topic>Machine learning</topic><topic>mobile computing</topic><topic>Quality of service architectures</topic><topic>Task analysis</topic><topic>Task offloading</topic><topic>Transportation applications</topic><topic>Vehicles</topic><topic>Vehicular ad hoc networks</topic><topic>vehicular network</topic><topic>Workload</topic><topic>Workloads</topic><toplevel>online_resources</toplevel><creatorcontrib>Chopra, Arpita</creatorcontrib><creatorcontrib>Rahman, Anis Ur</creatorcontrib><creatorcontrib>Malik, Asad Waqar</creatorcontrib><creatorcontrib>Ravana, Sri Devi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chopra, Arpita</au><au>Rahman, Anis Ur</au><au>Malik, Asad Waqar</au><au>Ravana, Sri Devi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Learning-based Vehicle-to-vehicle Opportunistic Resource Sharing Framework</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2022-07-15</date><risdate>2022</risdate><volume>9</volume><issue>14</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>With an ever-increasing number of connected devices on roads, it becomes unsustainable to provide nearby specialized execution resources (compute and storage) for servicing innovative applications. Moreover, the vehicular environment being inherently ad hoc and opportunistic, not to mention highly mobile, makes it unsuitable to use traditional cloud computing due to delayed and interrupted services. Thus, there is a possibility to introduce potential collaboration among nearby connected vehicles. However, the underlying decision model for the selection of the most suitable vehicle for task offloading is challenging in such a dynamic environment. In this study, we propose a collaborative vehicular computing framework that adopts online learning for efficient task assignment between local and neighboring computing resources. The underlying workload adaptive task offloading intends to balance out the workload across neighboring vehicles. The framework is compared against three techniques including two adaptive learning techniques in terms of service delay, efficiency, task delivery rate, task failures, and learning regret. The results demonstrate the effectiveness of the proposed resource-sharing network, improving service quality and throughput for servicing innovative intelligent transportation applications.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2021.3137264</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0026-1000</orcidid><orcidid>https://orcid.org/0000-0002-8306-475X</orcidid><orcidid>https://orcid.org/0000-0003-3804-997X</orcidid><orcidid>https://orcid.org/0000-0002-5637-9158</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2022-07, Vol.9 (14), p.1-1 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_proquest_journals_2685159606 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Adaptive learning Cloud computing Collaboration Computation offloading Computational modeling Delays Distance learning Internet of Things internet of vehicles Machine learning mobile computing Quality of service architectures Task analysis Task offloading Transportation applications Vehicles Vehicular ad hoc networks vehicular network Workload Workloads |
title | Adaptive Learning-based Vehicle-to-vehicle Opportunistic Resource Sharing Framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A10%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Learning-based%20Vehicle-to-vehicle%20Opportunistic%20Resource%20Sharing%20Framework&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Chopra,%20Arpita&rft.date=2022-07-15&rft.volume=9&rft.issue=14&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2021.3137264&rft_dat=%3Cproquest_RIE%3E2685159606%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685159606&rft_id=info:pmid/&rft_ieee_id=9657076&rfr_iscdi=true |