Adaptive Learning-based Vehicle-to-vehicle Opportunistic Resource Sharing Framework

With an ever-increasing number of connected devices on roads, it becomes unsustainable to provide nearby specialized execution resources (compute and storage) for servicing innovative applications. Moreover, the vehicular environment being inherently ad hoc and opportunistic, not to mention highly m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2022-07, Vol.9 (14), p.1-1
Hauptverfasser: Chopra, Arpita, Rahman, Anis Ur, Malik, Asad Waqar, Ravana, Sri Devi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 14
container_start_page 1
container_title IEEE internet of things journal
container_volume 9
creator Chopra, Arpita
Rahman, Anis Ur
Malik, Asad Waqar
Ravana, Sri Devi
description With an ever-increasing number of connected devices on roads, it becomes unsustainable to provide nearby specialized execution resources (compute and storage) for servicing innovative applications. Moreover, the vehicular environment being inherently ad hoc and opportunistic, not to mention highly mobile, makes it unsuitable to use traditional cloud computing due to delayed and interrupted services. Thus, there is a possibility to introduce potential collaboration among nearby connected vehicles. However, the underlying decision model for the selection of the most suitable vehicle for task offloading is challenging in such a dynamic environment. In this study, we propose a collaborative vehicular computing framework that adopts online learning for efficient task assignment between local and neighboring computing resources. The underlying workload adaptive task offloading intends to balance out the workload across neighboring vehicles. The framework is compared against three techniques including two adaptive learning techniques in terms of service delay, efficiency, task delivery rate, task failures, and learning regret. The results demonstrate the effectiveness of the proposed resource-sharing network, improving service quality and throughput for servicing innovative intelligent transportation applications.
doi_str_mv 10.1109/JIOT.2021.3137264
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2685159606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9657076</ieee_id><sourcerecordid>2685159606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-6ac52d33d3deab65c711481d3e7c5cc1de7debf63b2e430da654d69f0cdd228b3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOOZ-gHhT8DozH02yXo7hdDIYuOltSJNTl7m1Nekm_ntbOsSr8168zzmHB6FbSsaUkuzhZbHajBlhdMwpV0ymF2jAOFM4lZJd_svXaBTjjhDSYoJmcoDWU2fqxp8gWYIJpS8_cG4iuOQdtt7uATcVPvUxWdV1FZpj6WPjbfIKsToGC8l6a0LLJfNgDvBdhc8bdFWYfYTReQ7R2_xxM3vGy9XTYjZdYssy3mBprGCOc8cdmFwKqyhNJ9RxUFZYSx0oB3khec4g5cQZKVIns4JY5xib5HyI7vu9dai-jhAbvWs_KtuTmsmJoCKTRLYt2rdsqGIMUOg6-IMJP5oS3enTnT7d6dNnfS1z1zMeAP76mRSKKMl_AYhbbLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685159606</pqid></control><display><type>article</type><title>Adaptive Learning-based Vehicle-to-vehicle Opportunistic Resource Sharing Framework</title><source>IEEE Electronic Library (IEL)</source><creator>Chopra, Arpita ; Rahman, Anis Ur ; Malik, Asad Waqar ; Ravana, Sri Devi</creator><creatorcontrib>Chopra, Arpita ; Rahman, Anis Ur ; Malik, Asad Waqar ; Ravana, Sri Devi</creatorcontrib><description>With an ever-increasing number of connected devices on roads, it becomes unsustainable to provide nearby specialized execution resources (compute and storage) for servicing innovative applications. Moreover, the vehicular environment being inherently ad hoc and opportunistic, not to mention highly mobile, makes it unsuitable to use traditional cloud computing due to delayed and interrupted services. Thus, there is a possibility to introduce potential collaboration among nearby connected vehicles. However, the underlying decision model for the selection of the most suitable vehicle for task offloading is challenging in such a dynamic environment. In this study, we propose a collaborative vehicular computing framework that adopts online learning for efficient task assignment between local and neighboring computing resources. The underlying workload adaptive task offloading intends to balance out the workload across neighboring vehicles. The framework is compared against three techniques including two adaptive learning techniques in terms of service delay, efficiency, task delivery rate, task failures, and learning regret. The results demonstrate the effectiveness of the proposed resource-sharing network, improving service quality and throughput for servicing innovative intelligent transportation applications.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2021.3137264</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Adaptive learning ; Cloud computing ; Collaboration ; Computation offloading ; Computational modeling ; Delays ; Distance learning ; Internet of Things ; internet of vehicles ; Machine learning ; mobile computing ; Quality of service architectures ; Task analysis ; Task offloading ; Transportation applications ; Vehicles ; Vehicular ad hoc networks ; vehicular network ; Workload ; Workloads</subject><ispartof>IEEE internet of things journal, 2022-07, Vol.9 (14), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-6ac52d33d3deab65c711481d3e7c5cc1de7debf63b2e430da654d69f0cdd228b3</citedby><cites>FETCH-LOGICAL-c293t-6ac52d33d3deab65c711481d3e7c5cc1de7debf63b2e430da654d69f0cdd228b3</cites><orcidid>0000-0003-0026-1000 ; 0000-0002-8306-475X ; 0000-0003-3804-997X ; 0000-0002-5637-9158</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9657076$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9657076$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chopra, Arpita</creatorcontrib><creatorcontrib>Rahman, Anis Ur</creatorcontrib><creatorcontrib>Malik, Asad Waqar</creatorcontrib><creatorcontrib>Ravana, Sri Devi</creatorcontrib><title>Adaptive Learning-based Vehicle-to-vehicle Opportunistic Resource Sharing Framework</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>With an ever-increasing number of connected devices on roads, it becomes unsustainable to provide nearby specialized execution resources (compute and storage) for servicing innovative applications. Moreover, the vehicular environment being inherently ad hoc and opportunistic, not to mention highly mobile, makes it unsuitable to use traditional cloud computing due to delayed and interrupted services. Thus, there is a possibility to introduce potential collaboration among nearby connected vehicles. However, the underlying decision model for the selection of the most suitable vehicle for task offloading is challenging in such a dynamic environment. In this study, we propose a collaborative vehicular computing framework that adopts online learning for efficient task assignment between local and neighboring computing resources. The underlying workload adaptive task offloading intends to balance out the workload across neighboring vehicles. The framework is compared against three techniques including two adaptive learning techniques in terms of service delay, efficiency, task delivery rate, task failures, and learning regret. The results demonstrate the effectiveness of the proposed resource-sharing network, improving service quality and throughput for servicing innovative intelligent transportation applications.</description><subject>Adaptation models</subject><subject>Adaptive learning</subject><subject>Cloud computing</subject><subject>Collaboration</subject><subject>Computation offloading</subject><subject>Computational modeling</subject><subject>Delays</subject><subject>Distance learning</subject><subject>Internet of Things</subject><subject>internet of vehicles</subject><subject>Machine learning</subject><subject>mobile computing</subject><subject>Quality of service architectures</subject><subject>Task analysis</subject><subject>Task offloading</subject><subject>Transportation applications</subject><subject>Vehicles</subject><subject>Vehicular ad hoc networks</subject><subject>vehicular network</subject><subject>Workload</subject><subject>Workloads</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOOZ-gHhT8DozH02yXo7hdDIYuOltSJNTl7m1Nekm_ntbOsSr8168zzmHB6FbSsaUkuzhZbHajBlhdMwpV0ymF2jAOFM4lZJd_svXaBTjjhDSYoJmcoDWU2fqxp8gWYIJpS8_cG4iuOQdtt7uATcVPvUxWdV1FZpj6WPjbfIKsToGC8l6a0LLJfNgDvBdhc8bdFWYfYTReQ7R2_xxM3vGy9XTYjZdYssy3mBprGCOc8cdmFwKqyhNJ9RxUFZYSx0oB3khec4g5cQZKVIns4JY5xib5HyI7vu9dai-jhAbvWs_KtuTmsmJoCKTRLYt2rdsqGIMUOg6-IMJP5oS3enTnT7d6dNnfS1z1zMeAP76mRSKKMl_AYhbbLA</recordid><startdate>20220715</startdate><enddate>20220715</enddate><creator>Chopra, Arpita</creator><creator>Rahman, Anis Ur</creator><creator>Malik, Asad Waqar</creator><creator>Ravana, Sri Devi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0026-1000</orcidid><orcidid>https://orcid.org/0000-0002-8306-475X</orcidid><orcidid>https://orcid.org/0000-0003-3804-997X</orcidid><orcidid>https://orcid.org/0000-0002-5637-9158</orcidid></search><sort><creationdate>20220715</creationdate><title>Adaptive Learning-based Vehicle-to-vehicle Opportunistic Resource Sharing Framework</title><author>Chopra, Arpita ; Rahman, Anis Ur ; Malik, Asad Waqar ; Ravana, Sri Devi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-6ac52d33d3deab65c711481d3e7c5cc1de7debf63b2e430da654d69f0cdd228b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>Adaptive learning</topic><topic>Cloud computing</topic><topic>Collaboration</topic><topic>Computation offloading</topic><topic>Computational modeling</topic><topic>Delays</topic><topic>Distance learning</topic><topic>Internet of Things</topic><topic>internet of vehicles</topic><topic>Machine learning</topic><topic>mobile computing</topic><topic>Quality of service architectures</topic><topic>Task analysis</topic><topic>Task offloading</topic><topic>Transportation applications</topic><topic>Vehicles</topic><topic>Vehicular ad hoc networks</topic><topic>vehicular network</topic><topic>Workload</topic><topic>Workloads</topic><toplevel>online_resources</toplevel><creatorcontrib>Chopra, Arpita</creatorcontrib><creatorcontrib>Rahman, Anis Ur</creatorcontrib><creatorcontrib>Malik, Asad Waqar</creatorcontrib><creatorcontrib>Ravana, Sri Devi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chopra, Arpita</au><au>Rahman, Anis Ur</au><au>Malik, Asad Waqar</au><au>Ravana, Sri Devi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Learning-based Vehicle-to-vehicle Opportunistic Resource Sharing Framework</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2022-07-15</date><risdate>2022</risdate><volume>9</volume><issue>14</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>With an ever-increasing number of connected devices on roads, it becomes unsustainable to provide nearby specialized execution resources (compute and storage) for servicing innovative applications. Moreover, the vehicular environment being inherently ad hoc and opportunistic, not to mention highly mobile, makes it unsuitable to use traditional cloud computing due to delayed and interrupted services. Thus, there is a possibility to introduce potential collaboration among nearby connected vehicles. However, the underlying decision model for the selection of the most suitable vehicle for task offloading is challenging in such a dynamic environment. In this study, we propose a collaborative vehicular computing framework that adopts online learning for efficient task assignment between local and neighboring computing resources. The underlying workload adaptive task offloading intends to balance out the workload across neighboring vehicles. The framework is compared against three techniques including two adaptive learning techniques in terms of service delay, efficiency, task delivery rate, task failures, and learning regret. The results demonstrate the effectiveness of the proposed resource-sharing network, improving service quality and throughput for servicing innovative intelligent transportation applications.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2021.3137264</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0026-1000</orcidid><orcidid>https://orcid.org/0000-0002-8306-475X</orcidid><orcidid>https://orcid.org/0000-0003-3804-997X</orcidid><orcidid>https://orcid.org/0000-0002-5637-9158</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2022-07, Vol.9 (14), p.1-1
issn 2327-4662
2327-4662
language eng
recordid cdi_proquest_journals_2685159606
source IEEE Electronic Library (IEL)
subjects Adaptation models
Adaptive learning
Cloud computing
Collaboration
Computation offloading
Computational modeling
Delays
Distance learning
Internet of Things
internet of vehicles
Machine learning
mobile computing
Quality of service architectures
Task analysis
Task offloading
Transportation applications
Vehicles
Vehicular ad hoc networks
vehicular network
Workload
Workloads
title Adaptive Learning-based Vehicle-to-vehicle Opportunistic Resource Sharing Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A10%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Learning-based%20Vehicle-to-vehicle%20Opportunistic%20Resource%20Sharing%20Framework&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Chopra,%20Arpita&rft.date=2022-07-15&rft.volume=9&rft.issue=14&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2021.3137264&rft_dat=%3Cproquest_RIE%3E2685159606%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685159606&rft_id=info:pmid/&rft_ieee_id=9657076&rfr_iscdi=true