EdgePipe: Tailoring Pipeline Parallelism with Deep Neural Networks for Volatile Wireless Edge Devices
As intelligence recently moves to the edge to tackle the problems of privacy, scalability, and network bandwidth in the centralized intelligence, it is necessary to construct an efficient yet robust deep learning model viable at edge devices, which are usually volatile in wireless links and device f...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2022-07, Vol.9 (14), p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 14 |
container_start_page | 1 |
container_title | IEEE internet of things journal |
container_volume | 9 |
creator | Yoon, JinYi Byeon, Yeongsin Kim, Jeewoon Lee, HyungJune |
description | As intelligence recently moves to the edge to tackle the problems of privacy, scalability, and network bandwidth in the centralized intelligence, it is necessary to construct an efficient yet robust deep learning model viable at edge devices, which are usually volatile in wireless links and device functionality. The intensive computation burden for deep learning at the edge side necessitates some level of parallel processing via acceleration. We propose EdgePipe, a deep learning framework based on deep neural networks (DNNs) with a mixture of model parallelism and pipeline training for high resource utilization over volatile wireless edge devices. To tackle the volatility problem in wireless links and device functionality, a concept of super neuron is defined to be a group of neurons across adjacent layers, which is the basis of model partitioning at edge devices. The relatively loss-resilient neuron structure prevents the entire forward or backward training paths from being totally broken down due to only some intermittent link or device failure caused by one or few devices. Further, we design a subsequent pipeline training mechanism based on the prior super neuron-based model partitioning for fast convergence with more training data in a fixed timeline. The experimental results have demonstrated that EdgePipe outperforms several counterpart algorithms including PipeDream under the volatile wireless lossy or device malfunctioning environments, while preserving the low interlayer communication overhead. |
doi_str_mv | 10.1109/JIOT.2021.3131407 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2685158308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9628184</ieee_id><sourcerecordid>2685158308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-7c9d8486a5f2035764aedfbf91385b9da6e5bc715265c4a639cd3be0545a19143</originalsourceid><addsrcrecordid>eNpNkE9PwkAQxTdGEwnyAYyXTTwX93-73gyiYohwQD1utu0UFwvF3SLx27sNxHiaN5P33iQ_hC4pGVJK9M3zZLYYMsLokFNOBUlPUI9xliZCKXb6T5-jQQgrQkiMSapVD8G4XMLcbeEWL6yrG-82S9zttdsAnltv6zrqsMZ7137ge4AtfoFdPMfR7hv_GXDVePzW1LZ1NeB356GGEHBXHP3froBwgc4qWwcYHGcfvT6MF6OnZDp7nIzupknBNG-TtNBlJjJlZcUIl6kSFsoqrzTlmcx1aRXIvEipZEoWwiqui5LnQKSQlmoqeB9dH3q3vvnaQWjNqtn5TXxpmMoklRknWXTRg6vwTQgeKrP1bm39j6HEdEBNB9R0QM0RaMxcHTIOAP78WrGMZoL_AgwFcS8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685158308</pqid></control><display><type>article</type><title>EdgePipe: Tailoring Pipeline Parallelism with Deep Neural Networks for Volatile Wireless Edge Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Yoon, JinYi ; Byeon, Yeongsin ; Kim, Jeewoon ; Lee, HyungJune</creator><creatorcontrib>Yoon, JinYi ; Byeon, Yeongsin ; Kim, Jeewoon ; Lee, HyungJune</creatorcontrib><description>As intelligence recently moves to the edge to tackle the problems of privacy, scalability, and network bandwidth in the centralized intelligence, it is necessary to construct an efficient yet robust deep learning model viable at edge devices, which are usually volatile in wireless links and device functionality. The intensive computation burden for deep learning at the edge side necessitates some level of parallel processing via acceleration. We propose EdgePipe, a deep learning framework based on deep neural networks (DNNs) with a mixture of model parallelism and pipeline training for high resource utilization over volatile wireless edge devices. To tackle the volatility problem in wireless links and device functionality, a concept of super neuron is defined to be a group of neurons across adjacent layers, which is the basis of model partitioning at edge devices. The relatively loss-resilient neuron structure prevents the entire forward or backward training paths from being totally broken down due to only some intermittent link or device failure caused by one or few devices. Further, we design a subsequent pipeline training mechanism based on the prior super neuron-based model partitioning for fast convergence with more training data in a fixed timeline. The experimental results have demonstrated that EdgePipe outperforms several counterpart algorithms including PipeDream under the volatile wireless lossy or device malfunctioning environments, while preserving the low interlayer communication overhead.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2021.3131407</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Computational modeling ; Deep learning ; Distributed Deep Learning ; Edge Device ; Intelligence ; Interlayers ; Machine learning ; Model Parallelism ; Neural networks ; Neurons ; Parallel processing ; Partitioning ; Pipeline Parallelism ; Pipelines ; Resource utilization ; Training ; Volatile Wireless Links ; Volatility ; Wireless communication ; Wireless networks</subject><ispartof>IEEE internet of things journal, 2022-07, Vol.9 (14), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-7c9d8486a5f2035764aedfbf91385b9da6e5bc715265c4a639cd3be0545a19143</citedby><cites>FETCH-LOGICAL-c293t-7c9d8486a5f2035764aedfbf91385b9da6e5bc715265c4a639cd3be0545a19143</cites><orcidid>0000-0003-4655-4298 ; 0000-0002-9146-3531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9628184$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9628184$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yoon, JinYi</creatorcontrib><creatorcontrib>Byeon, Yeongsin</creatorcontrib><creatorcontrib>Kim, Jeewoon</creatorcontrib><creatorcontrib>Lee, HyungJune</creatorcontrib><title>EdgePipe: Tailoring Pipeline Parallelism with Deep Neural Networks for Volatile Wireless Edge Devices</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>As intelligence recently moves to the edge to tackle the problems of privacy, scalability, and network bandwidth in the centralized intelligence, it is necessary to construct an efficient yet robust deep learning model viable at edge devices, which are usually volatile in wireless links and device functionality. The intensive computation burden for deep learning at the edge side necessitates some level of parallel processing via acceleration. We propose EdgePipe, a deep learning framework based on deep neural networks (DNNs) with a mixture of model parallelism and pipeline training for high resource utilization over volatile wireless edge devices. To tackle the volatility problem in wireless links and device functionality, a concept of super neuron is defined to be a group of neurons across adjacent layers, which is the basis of model partitioning at edge devices. The relatively loss-resilient neuron structure prevents the entire forward or backward training paths from being totally broken down due to only some intermittent link or device failure caused by one or few devices. Further, we design a subsequent pipeline training mechanism based on the prior super neuron-based model partitioning for fast convergence with more training data in a fixed timeline. The experimental results have demonstrated that EdgePipe outperforms several counterpart algorithms including PipeDream under the volatile wireless lossy or device malfunctioning environments, while preserving the low interlayer communication overhead.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Computational modeling</subject><subject>Deep learning</subject><subject>Distributed Deep Learning</subject><subject>Edge Device</subject><subject>Intelligence</subject><subject>Interlayers</subject><subject>Machine learning</subject><subject>Model Parallelism</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Parallel processing</subject><subject>Partitioning</subject><subject>Pipeline Parallelism</subject><subject>Pipelines</subject><subject>Resource utilization</subject><subject>Training</subject><subject>Volatile Wireless Links</subject><subject>Volatility</subject><subject>Wireless communication</subject><subject>Wireless networks</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9PwkAQxTdGEwnyAYyXTTwX93-73gyiYohwQD1utu0UFwvF3SLx27sNxHiaN5P33iQ_hC4pGVJK9M3zZLYYMsLokFNOBUlPUI9xliZCKXb6T5-jQQgrQkiMSapVD8G4XMLcbeEWL6yrG-82S9zttdsAnltv6zrqsMZ7137ge4AtfoFdPMfR7hv_GXDVePzW1LZ1NeB356GGEHBXHP3froBwgc4qWwcYHGcfvT6MF6OnZDp7nIzupknBNG-TtNBlJjJlZcUIl6kSFsoqrzTlmcx1aRXIvEipZEoWwiqui5LnQKSQlmoqeB9dH3q3vvnaQWjNqtn5TXxpmMoklRknWXTRg6vwTQgeKrP1bm39j6HEdEBNB9R0QM0RaMxcHTIOAP78WrGMZoL_AgwFcS8</recordid><startdate>20220715</startdate><enddate>20220715</enddate><creator>Yoon, JinYi</creator><creator>Byeon, Yeongsin</creator><creator>Kim, Jeewoon</creator><creator>Lee, HyungJune</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4655-4298</orcidid><orcidid>https://orcid.org/0000-0002-9146-3531</orcidid></search><sort><creationdate>20220715</creationdate><title>EdgePipe: Tailoring Pipeline Parallelism with Deep Neural Networks for Volatile Wireless Edge Devices</title><author>Yoon, JinYi ; Byeon, Yeongsin ; Kim, Jeewoon ; Lee, HyungJune</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-7c9d8486a5f2035764aedfbf91385b9da6e5bc715265c4a639cd3be0545a19143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Computational modeling</topic><topic>Deep learning</topic><topic>Distributed Deep Learning</topic><topic>Edge Device</topic><topic>Intelligence</topic><topic>Interlayers</topic><topic>Machine learning</topic><topic>Model Parallelism</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Parallel processing</topic><topic>Partitioning</topic><topic>Pipeline Parallelism</topic><topic>Pipelines</topic><topic>Resource utilization</topic><topic>Training</topic><topic>Volatile Wireless Links</topic><topic>Volatility</topic><topic>Wireless communication</topic><topic>Wireless networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Yoon, JinYi</creatorcontrib><creatorcontrib>Byeon, Yeongsin</creatorcontrib><creatorcontrib>Kim, Jeewoon</creatorcontrib><creatorcontrib>Lee, HyungJune</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yoon, JinYi</au><au>Byeon, Yeongsin</au><au>Kim, Jeewoon</au><au>Lee, HyungJune</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EdgePipe: Tailoring Pipeline Parallelism with Deep Neural Networks for Volatile Wireless Edge Devices</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2022-07-15</date><risdate>2022</risdate><volume>9</volume><issue>14</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>As intelligence recently moves to the edge to tackle the problems of privacy, scalability, and network bandwidth in the centralized intelligence, it is necessary to construct an efficient yet robust deep learning model viable at edge devices, which are usually volatile in wireless links and device functionality. The intensive computation burden for deep learning at the edge side necessitates some level of parallel processing via acceleration. We propose EdgePipe, a deep learning framework based on deep neural networks (DNNs) with a mixture of model parallelism and pipeline training for high resource utilization over volatile wireless edge devices. To tackle the volatility problem in wireless links and device functionality, a concept of super neuron is defined to be a group of neurons across adjacent layers, which is the basis of model partitioning at edge devices. The relatively loss-resilient neuron structure prevents the entire forward or backward training paths from being totally broken down due to only some intermittent link or device failure caused by one or few devices. Further, we design a subsequent pipeline training mechanism based on the prior super neuron-based model partitioning for fast convergence with more training data in a fixed timeline. The experimental results have demonstrated that EdgePipe outperforms several counterpart algorithms including PipeDream under the volatile wireless lossy or device malfunctioning environments, while preserving the low interlayer communication overhead.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2021.3131407</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4655-4298</orcidid><orcidid>https://orcid.org/0000-0002-9146-3531</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2022-07, Vol.9 (14), p.1-1 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_proquest_journals_2685158308 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial neural networks Computational modeling Deep learning Distributed Deep Learning Edge Device Intelligence Interlayers Machine learning Model Parallelism Neural networks Neurons Parallel processing Partitioning Pipeline Parallelism Pipelines Resource utilization Training Volatile Wireless Links Volatility Wireless communication Wireless networks |
title | EdgePipe: Tailoring Pipeline Parallelism with Deep Neural Networks for Volatile Wireless Edge Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EdgePipe:%20Tailoring%20Pipeline%20Parallelism%20with%20Deep%20Neural%20Networks%20for%20Volatile%20Wireless%20Edge%20Devices&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Yoon,%20JinYi&rft.date=2022-07-15&rft.volume=9&rft.issue=14&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2021.3131407&rft_dat=%3Cproquest_RIE%3E2685158308%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685158308&rft_id=info:pmid/&rft_ieee_id=9628184&rfr_iscdi=true |