EdgePipe: Tailoring Pipeline Parallelism with Deep Neural Networks for Volatile Wireless Edge Devices

As intelligence recently moves to the edge to tackle the problems of privacy, scalability, and network bandwidth in the centralized intelligence, it is necessary to construct an efficient yet robust deep learning model viable at edge devices, which are usually volatile in wireless links and device f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2022-07, Vol.9 (14), p.1-1
Hauptverfasser: Yoon, JinYi, Byeon, Yeongsin, Kim, Jeewoon, Lee, HyungJune
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 14
container_start_page 1
container_title IEEE internet of things journal
container_volume 9
creator Yoon, JinYi
Byeon, Yeongsin
Kim, Jeewoon
Lee, HyungJune
description As intelligence recently moves to the edge to tackle the problems of privacy, scalability, and network bandwidth in the centralized intelligence, it is necessary to construct an efficient yet robust deep learning model viable at edge devices, which are usually volatile in wireless links and device functionality. The intensive computation burden for deep learning at the edge side necessitates some level of parallel processing via acceleration. We propose EdgePipe, a deep learning framework based on deep neural networks (DNNs) with a mixture of model parallelism and pipeline training for high resource utilization over volatile wireless edge devices. To tackle the volatility problem in wireless links and device functionality, a concept of super neuron is defined to be a group of neurons across adjacent layers, which is the basis of model partitioning at edge devices. The relatively loss-resilient neuron structure prevents the entire forward or backward training paths from being totally broken down due to only some intermittent link or device failure caused by one or few devices. Further, we design a subsequent pipeline training mechanism based on the prior super neuron-based model partitioning for fast convergence with more training data in a fixed timeline. The experimental results have demonstrated that EdgePipe outperforms several counterpart algorithms including PipeDream under the volatile wireless lossy or device malfunctioning environments, while preserving the low interlayer communication overhead.
doi_str_mv 10.1109/JIOT.2021.3131407
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2685158308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9628184</ieee_id><sourcerecordid>2685158308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-7c9d8486a5f2035764aedfbf91385b9da6e5bc715265c4a639cd3be0545a19143</originalsourceid><addsrcrecordid>eNpNkE9PwkAQxTdGEwnyAYyXTTwX93-73gyiYohwQD1utu0UFwvF3SLx27sNxHiaN5P33iQ_hC4pGVJK9M3zZLYYMsLokFNOBUlPUI9xliZCKXb6T5-jQQgrQkiMSapVD8G4XMLcbeEWL6yrG-82S9zttdsAnltv6zrqsMZ7137ge4AtfoFdPMfR7hv_GXDVePzW1LZ1NeB356GGEHBXHP3froBwgc4qWwcYHGcfvT6MF6OnZDp7nIzupknBNG-TtNBlJjJlZcUIl6kSFsoqrzTlmcx1aRXIvEipZEoWwiqui5LnQKSQlmoqeB9dH3q3vvnaQWjNqtn5TXxpmMoklRknWXTRg6vwTQgeKrP1bm39j6HEdEBNB9R0QM0RaMxcHTIOAP78WrGMZoL_AgwFcS8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685158308</pqid></control><display><type>article</type><title>EdgePipe: Tailoring Pipeline Parallelism with Deep Neural Networks for Volatile Wireless Edge Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Yoon, JinYi ; Byeon, Yeongsin ; Kim, Jeewoon ; Lee, HyungJune</creator><creatorcontrib>Yoon, JinYi ; Byeon, Yeongsin ; Kim, Jeewoon ; Lee, HyungJune</creatorcontrib><description>As intelligence recently moves to the edge to tackle the problems of privacy, scalability, and network bandwidth in the centralized intelligence, it is necessary to construct an efficient yet robust deep learning model viable at edge devices, which are usually volatile in wireless links and device functionality. The intensive computation burden for deep learning at the edge side necessitates some level of parallel processing via acceleration. We propose EdgePipe, a deep learning framework based on deep neural networks (DNNs) with a mixture of model parallelism and pipeline training for high resource utilization over volatile wireless edge devices. To tackle the volatility problem in wireless links and device functionality, a concept of super neuron is defined to be a group of neurons across adjacent layers, which is the basis of model partitioning at edge devices. The relatively loss-resilient neuron structure prevents the entire forward or backward training paths from being totally broken down due to only some intermittent link or device failure caused by one or few devices. Further, we design a subsequent pipeline training mechanism based on the prior super neuron-based model partitioning for fast convergence with more training data in a fixed timeline. The experimental results have demonstrated that EdgePipe outperforms several counterpart algorithms including PipeDream under the volatile wireless lossy or device malfunctioning environments, while preserving the low interlayer communication overhead.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2021.3131407</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Computational modeling ; Deep learning ; Distributed Deep Learning ; Edge Device ; Intelligence ; Interlayers ; Machine learning ; Model Parallelism ; Neural networks ; Neurons ; Parallel processing ; Partitioning ; Pipeline Parallelism ; Pipelines ; Resource utilization ; Training ; Volatile Wireless Links ; Volatility ; Wireless communication ; Wireless networks</subject><ispartof>IEEE internet of things journal, 2022-07, Vol.9 (14), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-7c9d8486a5f2035764aedfbf91385b9da6e5bc715265c4a639cd3be0545a19143</citedby><cites>FETCH-LOGICAL-c293t-7c9d8486a5f2035764aedfbf91385b9da6e5bc715265c4a639cd3be0545a19143</cites><orcidid>0000-0003-4655-4298 ; 0000-0002-9146-3531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9628184$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9628184$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yoon, JinYi</creatorcontrib><creatorcontrib>Byeon, Yeongsin</creatorcontrib><creatorcontrib>Kim, Jeewoon</creatorcontrib><creatorcontrib>Lee, HyungJune</creatorcontrib><title>EdgePipe: Tailoring Pipeline Parallelism with Deep Neural Networks for Volatile Wireless Edge Devices</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>As intelligence recently moves to the edge to tackle the problems of privacy, scalability, and network bandwidth in the centralized intelligence, it is necessary to construct an efficient yet robust deep learning model viable at edge devices, which are usually volatile in wireless links and device functionality. The intensive computation burden for deep learning at the edge side necessitates some level of parallel processing via acceleration. We propose EdgePipe, a deep learning framework based on deep neural networks (DNNs) with a mixture of model parallelism and pipeline training for high resource utilization over volatile wireless edge devices. To tackle the volatility problem in wireless links and device functionality, a concept of super neuron is defined to be a group of neurons across adjacent layers, which is the basis of model partitioning at edge devices. The relatively loss-resilient neuron structure prevents the entire forward or backward training paths from being totally broken down due to only some intermittent link or device failure caused by one or few devices. Further, we design a subsequent pipeline training mechanism based on the prior super neuron-based model partitioning for fast convergence with more training data in a fixed timeline. The experimental results have demonstrated that EdgePipe outperforms several counterpart algorithms including PipeDream under the volatile wireless lossy or device malfunctioning environments, while preserving the low interlayer communication overhead.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Computational modeling</subject><subject>Deep learning</subject><subject>Distributed Deep Learning</subject><subject>Edge Device</subject><subject>Intelligence</subject><subject>Interlayers</subject><subject>Machine learning</subject><subject>Model Parallelism</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Parallel processing</subject><subject>Partitioning</subject><subject>Pipeline Parallelism</subject><subject>Pipelines</subject><subject>Resource utilization</subject><subject>Training</subject><subject>Volatile Wireless Links</subject><subject>Volatility</subject><subject>Wireless communication</subject><subject>Wireless networks</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9PwkAQxTdGEwnyAYyXTTwX93-73gyiYohwQD1utu0UFwvF3SLx27sNxHiaN5P33iQ_hC4pGVJK9M3zZLYYMsLokFNOBUlPUI9xliZCKXb6T5-jQQgrQkiMSapVD8G4XMLcbeEWL6yrG-82S9zttdsAnltv6zrqsMZ7137ge4AtfoFdPMfR7hv_GXDVePzW1LZ1NeB356GGEHBXHP3froBwgc4qWwcYHGcfvT6MF6OnZDp7nIzupknBNG-TtNBlJjJlZcUIl6kSFsoqrzTlmcx1aRXIvEipZEoWwiqui5LnQKSQlmoqeB9dH3q3vvnaQWjNqtn5TXxpmMoklRknWXTRg6vwTQgeKrP1bm39j6HEdEBNB9R0QM0RaMxcHTIOAP78WrGMZoL_AgwFcS8</recordid><startdate>20220715</startdate><enddate>20220715</enddate><creator>Yoon, JinYi</creator><creator>Byeon, Yeongsin</creator><creator>Kim, Jeewoon</creator><creator>Lee, HyungJune</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4655-4298</orcidid><orcidid>https://orcid.org/0000-0002-9146-3531</orcidid></search><sort><creationdate>20220715</creationdate><title>EdgePipe: Tailoring Pipeline Parallelism with Deep Neural Networks for Volatile Wireless Edge Devices</title><author>Yoon, JinYi ; Byeon, Yeongsin ; Kim, Jeewoon ; Lee, HyungJune</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-7c9d8486a5f2035764aedfbf91385b9da6e5bc715265c4a639cd3be0545a19143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Computational modeling</topic><topic>Deep learning</topic><topic>Distributed Deep Learning</topic><topic>Edge Device</topic><topic>Intelligence</topic><topic>Interlayers</topic><topic>Machine learning</topic><topic>Model Parallelism</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Parallel processing</topic><topic>Partitioning</topic><topic>Pipeline Parallelism</topic><topic>Pipelines</topic><topic>Resource utilization</topic><topic>Training</topic><topic>Volatile Wireless Links</topic><topic>Volatility</topic><topic>Wireless communication</topic><topic>Wireless networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Yoon, JinYi</creatorcontrib><creatorcontrib>Byeon, Yeongsin</creatorcontrib><creatorcontrib>Kim, Jeewoon</creatorcontrib><creatorcontrib>Lee, HyungJune</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yoon, JinYi</au><au>Byeon, Yeongsin</au><au>Kim, Jeewoon</au><au>Lee, HyungJune</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EdgePipe: Tailoring Pipeline Parallelism with Deep Neural Networks for Volatile Wireless Edge Devices</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2022-07-15</date><risdate>2022</risdate><volume>9</volume><issue>14</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>As intelligence recently moves to the edge to tackle the problems of privacy, scalability, and network bandwidth in the centralized intelligence, it is necessary to construct an efficient yet robust deep learning model viable at edge devices, which are usually volatile in wireless links and device functionality. The intensive computation burden for deep learning at the edge side necessitates some level of parallel processing via acceleration. We propose EdgePipe, a deep learning framework based on deep neural networks (DNNs) with a mixture of model parallelism and pipeline training for high resource utilization over volatile wireless edge devices. To tackle the volatility problem in wireless links and device functionality, a concept of super neuron is defined to be a group of neurons across adjacent layers, which is the basis of model partitioning at edge devices. The relatively loss-resilient neuron structure prevents the entire forward or backward training paths from being totally broken down due to only some intermittent link or device failure caused by one or few devices. Further, we design a subsequent pipeline training mechanism based on the prior super neuron-based model partitioning for fast convergence with more training data in a fixed timeline. The experimental results have demonstrated that EdgePipe outperforms several counterpart algorithms including PipeDream under the volatile wireless lossy or device malfunctioning environments, while preserving the low interlayer communication overhead.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2021.3131407</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4655-4298</orcidid><orcidid>https://orcid.org/0000-0002-9146-3531</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2022-07, Vol.9 (14), p.1-1
issn 2327-4662
2327-4662
language eng
recordid cdi_proquest_journals_2685158308
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
Computational modeling
Deep learning
Distributed Deep Learning
Edge Device
Intelligence
Interlayers
Machine learning
Model Parallelism
Neural networks
Neurons
Parallel processing
Partitioning
Pipeline Parallelism
Pipelines
Resource utilization
Training
Volatile Wireless Links
Volatility
Wireless communication
Wireless networks
title EdgePipe: Tailoring Pipeline Parallelism with Deep Neural Networks for Volatile Wireless Edge Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EdgePipe:%20Tailoring%20Pipeline%20Parallelism%20with%20Deep%20Neural%20Networks%20for%20Volatile%20Wireless%20Edge%20Devices&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Yoon,%20JinYi&rft.date=2022-07-15&rft.volume=9&rft.issue=14&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2021.3131407&rft_dat=%3Cproquest_RIE%3E2685158308%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685158308&rft_id=info:pmid/&rft_ieee_id=9628184&rfr_iscdi=true