Density jump as a function of magnetic field for switch-on collisionless shocks in pair plasmas

The properties of collisionless shocks, like the density jump, are usually derived from magnetohydrodynamics (MHD), where isotropic pressures are assumed. Yet, in a collisionless plasma, an external magnetic field can sustain a stable anisotropy. We have already devised a model for the kinetic histo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plasma physics 2022-06, Vol.88 (3), Article 905880320
Hauptverfasser: Bret, Antoine, Narayan, Ramesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Journal of plasma physics
container_volume 88
creator Bret, Antoine
Narayan, Ramesh
description The properties of collisionless shocks, like the density jump, are usually derived from magnetohydrodynamics (MHD), where isotropic pressures are assumed. Yet, in a collisionless plasma, an external magnetic field can sustain a stable anisotropy. We have already devised a model for the kinetic history of the plasma through the shock front (J. Plasma Phys., vol. 84, issue 6, 2018, 905840604), allowing to self-consistently compute the downstream anisotropy, and hence the density jump, in terms of the upstream parameters. This model deals with the case of a parallel shock, where the magnetic field is normal to the front both in the upstream and the downstream. Yet, MHD also allows for shock solutions, the so-called switch-on solutions, where the field is normal to the front only in the upstream. This article consists in applying our model to these switch-on shocks. While MHD offers only one switch-on solution within a limited range of Alfvén Mach numbers, our model offers two kinds of solutions within a slightly different range of Alfvén Mach numbers. These two solutions are most likely the outcome of the intermediate and fast MHD shocks under our model. While the intermediate and fast shocks merge in MHD for the parallel case, they do not within our model. For simplicity, the formalism is restricted to non-relativistic shocks in pair plasmas where the upstream is cold.
doi_str_mv 10.1017/S0022377822000605
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2684888237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022377822000605</cupid><sourcerecordid>2684888237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-84717d1df83d28c2852f307762e2d00cc2b13ecfe11435650e730b2178a521f83</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHcB19WXpG3iUsZPGHChrkuaJjMZ26bmtcj8ezPMgAtx9Rb3nPvgEnLJ4JoBkzdvAJwLKRXnAFBCcURmLC9vM6lAHpPZLs52-Sk5Q9wkRgCXM1Ld2x79uKWbqRuoRqqpm3oz-tDT4GinV70dvaHO27ahLkSK33406yzlJrStx0S2FpHiOphPpL6ng_aRDq3GTuM5OXG6RXtxuHPy8fjwvnjOlq9PL4u7ZWYEk2OmcslkwxqnRMOV4argToCUJbe8ATCG10xY4yxjuSjKAqwUUHMmlS44S9acXO17hxi-JotjtQlT7NPLipcqV0qldRLF9pSJATFaVw3RdzpuKwbVbsfqz47JEQdHd3X0zcr-Vv9v_QBODHO5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684888237</pqid></control><display><type>article</type><title>Density jump as a function of magnetic field for switch-on collisionless shocks in pair plasmas</title><source>Cambridge Journals</source><creator>Bret, Antoine ; Narayan, Ramesh</creator><creatorcontrib>Bret, Antoine ; Narayan, Ramesh</creatorcontrib><description>The properties of collisionless shocks, like the density jump, are usually derived from magnetohydrodynamics (MHD), where isotropic pressures are assumed. Yet, in a collisionless plasma, an external magnetic field can sustain a stable anisotropy. We have already devised a model for the kinetic history of the plasma through the shock front (J. Plasma Phys., vol. 84, issue 6, 2018, 905840604), allowing to self-consistently compute the downstream anisotropy, and hence the density jump, in terms of the upstream parameters. This model deals with the case of a parallel shock, where the magnetic field is normal to the front both in the upstream and the downstream. Yet, MHD also allows for shock solutions, the so-called switch-on solutions, where the field is normal to the front only in the upstream. This article consists in applying our model to these switch-on shocks. While MHD offers only one switch-on solution within a limited range of Alfvén Mach numbers, our model offers two kinds of solutions within a slightly different range of Alfvén Mach numbers. These two solutions are most likely the outcome of the intermediate and fast MHD shocks under our model. While the intermediate and fast shocks merge in MHD for the parallel case, they do not within our model. For simplicity, the formalism is restricted to non-relativistic shocks in pair plasmas where the upstream is cold.</description><identifier>ISSN: 0022-3778</identifier><identifier>EISSN: 1469-7807</identifier><identifier>DOI: 10.1017/S0022377822000605</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Anisotropy ; Collisionless plasmas ; Density ; External pressure ; Laboratories ; Magnetic fields ; Magnetic properties ; Magnetohydrodynamics ; Plasma physics ; Plasmas (physics) ; Temperature ; Upstream</subject><ispartof>Journal of plasma physics, 2022-06, Vol.88 (3), Article 905880320</ispartof><rights>Copyright © The Author(s), 2022. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-84717d1df83d28c2852f307762e2d00cc2b13ecfe11435650e730b2178a521f83</citedby><cites>FETCH-LOGICAL-c317t-84717d1df83d28c2852f307762e2d00cc2b13ecfe11435650e730b2178a521f83</cites><orcidid>0000-0003-2030-0046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022377822000605/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids></links><search><creatorcontrib>Bret, Antoine</creatorcontrib><creatorcontrib>Narayan, Ramesh</creatorcontrib><title>Density jump as a function of magnetic field for switch-on collisionless shocks in pair plasmas</title><title>Journal of plasma physics</title><addtitle>J. Plasma Phys</addtitle><description>The properties of collisionless shocks, like the density jump, are usually derived from magnetohydrodynamics (MHD), where isotropic pressures are assumed. Yet, in a collisionless plasma, an external magnetic field can sustain a stable anisotropy. We have already devised a model for the kinetic history of the plasma through the shock front (J. Plasma Phys., vol. 84, issue 6, 2018, 905840604), allowing to self-consistently compute the downstream anisotropy, and hence the density jump, in terms of the upstream parameters. This model deals with the case of a parallel shock, where the magnetic field is normal to the front both in the upstream and the downstream. Yet, MHD also allows for shock solutions, the so-called switch-on solutions, where the field is normal to the front only in the upstream. This article consists in applying our model to these switch-on shocks. While MHD offers only one switch-on solution within a limited range of Alfvén Mach numbers, our model offers two kinds of solutions within a slightly different range of Alfvén Mach numbers. These two solutions are most likely the outcome of the intermediate and fast MHD shocks under our model. While the intermediate and fast shocks merge in MHD for the parallel case, they do not within our model. For simplicity, the formalism is restricted to non-relativistic shocks in pair plasmas where the upstream is cold.</description><subject>Anisotropy</subject><subject>Collisionless plasmas</subject><subject>Density</subject><subject>External pressure</subject><subject>Laboratories</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Magnetohydrodynamics</subject><subject>Plasma physics</subject><subject>Plasmas (physics)</subject><subject>Temperature</subject><subject>Upstream</subject><issn>0022-3778</issn><issn>1469-7807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAURYMoOI7-AHcB19WXpG3iUsZPGHChrkuaJjMZ26bmtcj8ezPMgAtx9Rb3nPvgEnLJ4JoBkzdvAJwLKRXnAFBCcURmLC9vM6lAHpPZLs52-Sk5Q9wkRgCXM1Ld2x79uKWbqRuoRqqpm3oz-tDT4GinV70dvaHO27ahLkSK33406yzlJrStx0S2FpHiOphPpL6ng_aRDq3GTuM5OXG6RXtxuHPy8fjwvnjOlq9PL4u7ZWYEk2OmcslkwxqnRMOV4argToCUJbe8ATCG10xY4yxjuSjKAqwUUHMmlS44S9acXO17hxi-JotjtQlT7NPLipcqV0qldRLF9pSJATFaVw3RdzpuKwbVbsfqz47JEQdHd3X0zcr-Vv9v_QBODHO5</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Bret, Antoine</creator><creator>Narayan, Ramesh</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-2030-0046</orcidid></search><sort><creationdate>20220601</creationdate><title>Density jump as a function of magnetic field for switch-on collisionless shocks in pair plasmas</title><author>Bret, Antoine ; Narayan, Ramesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-84717d1df83d28c2852f307762e2d00cc2b13ecfe11435650e730b2178a521f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anisotropy</topic><topic>Collisionless plasmas</topic><topic>Density</topic><topic>External pressure</topic><topic>Laboratories</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Magnetohydrodynamics</topic><topic>Plasma physics</topic><topic>Plasmas (physics)</topic><topic>Temperature</topic><topic>Upstream</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bret, Antoine</creatorcontrib><creatorcontrib>Narayan, Ramesh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of plasma physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bret, Antoine</au><au>Narayan, Ramesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Density jump as a function of magnetic field for switch-on collisionless shocks in pair plasmas</atitle><jtitle>Journal of plasma physics</jtitle><addtitle>J. Plasma Phys</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>88</volume><issue>3</issue><artnum>905880320</artnum><issn>0022-3778</issn><eissn>1469-7807</eissn><abstract>The properties of collisionless shocks, like the density jump, are usually derived from magnetohydrodynamics (MHD), where isotropic pressures are assumed. Yet, in a collisionless plasma, an external magnetic field can sustain a stable anisotropy. We have already devised a model for the kinetic history of the plasma through the shock front (J. Plasma Phys., vol. 84, issue 6, 2018, 905840604), allowing to self-consistently compute the downstream anisotropy, and hence the density jump, in terms of the upstream parameters. This model deals with the case of a parallel shock, where the magnetic field is normal to the front both in the upstream and the downstream. Yet, MHD also allows for shock solutions, the so-called switch-on solutions, where the field is normal to the front only in the upstream. This article consists in applying our model to these switch-on shocks. While MHD offers only one switch-on solution within a limited range of Alfvén Mach numbers, our model offers two kinds of solutions within a slightly different range of Alfvén Mach numbers. These two solutions are most likely the outcome of the intermediate and fast MHD shocks under our model. While the intermediate and fast shocks merge in MHD for the parallel case, they do not within our model. For simplicity, the formalism is restricted to non-relativistic shocks in pair plasmas where the upstream is cold.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022377822000605</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-2030-0046</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3778
ispartof Journal of plasma physics, 2022-06, Vol.88 (3), Article 905880320
issn 0022-3778
1469-7807
language eng
recordid cdi_proquest_journals_2684888237
source Cambridge Journals
subjects Anisotropy
Collisionless plasmas
Density
External pressure
Laboratories
Magnetic fields
Magnetic properties
Magnetohydrodynamics
Plasma physics
Plasmas (physics)
Temperature
Upstream
title Density jump as a function of magnetic field for switch-on collisionless shocks in pair plasmas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A28%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Density%20jump%20as%20a%20function%20of%20magnetic%20field%20for%20switch-on%20collisionless%20shocks%20in%20pair%20plasmas&rft.jtitle=Journal%20of%20plasma%20physics&rft.au=Bret,%20Antoine&rft.date=2022-06-01&rft.volume=88&rft.issue=3&rft.artnum=905880320&rft.issn=0022-3778&rft.eissn=1469-7807&rft_id=info:doi/10.1017/S0022377822000605&rft_dat=%3Cproquest_cross%3E2684888237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2684888237&rft_id=info:pmid/&rft_cupid=10_1017_S0022377822000605&rfr_iscdi=true