A Behavioral Model for Exploration vs. Exploitation: Theoretical Framework and Experimental Evidence

How do people navigate the exploration-exploitation (EE) trade-off when making repeated choices with unknown rewards? We study this question through the lens of multi-armed bandit problems and introduce a novel behavioral model, Quantal Choice with Adaptive Reduction of Exploration (QCARE). It gener...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Ding, Jingying, Feng, Yifan, Rong, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ding, Jingying
Feng, Yifan
Rong, Ying
description How do people navigate the exploration-exploitation (EE) trade-off when making repeated choices with unknown rewards? We study this question through the lens of multi-armed bandit problems and introduce a novel behavioral model, Quantal Choice with Adaptive Reduction of Exploration (QCARE). It generalizes Thompson Sampling, allowing for a principled way to quantify the EE trade-off and reflect human decision-making patterns. The model adaptively reduces exploration as information accumulates, with the reduction rate serving as a parameter to quantify the EE trade-off dynamics. We theoretically analyze how varying reduction rates influence decision quality, shedding light on the effects of ``over-exploration'' and ``under-exploration.'' Empirically, we validate QCARE through experiments collecting behavioral data from human participants. QCARE not only captures critical behavioral patterns in the EE trade-off but also outperforms alternative models in predictive power. Our analysis reveals a behavioral tendency toward over-exploration.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2684780772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2684780772</sourcerecordid><originalsourceid>FETCH-proquest_journals_26847807723</originalsourceid><addsrcrecordid>eNqNi8sOgjAURBsTE4nyD01cY2rLK-7UQNy4Y08auIQitNgW9POtjw9wNZk5ZxbIo4ztgzSkdIV8YzpCCI0TGkXMQ_URn6Dls1Ca9_iqauhxozTOnmPvJiuUxLPZfbuwn-GAixaUBisq98k1H-Ch9A1zWb890GIAaR3KZlGDrGCDlg3vDfi_XKNtnhXnSzBqdZ_A2LJTk5YOlTROwyQlSULZf9YLBt5GcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684780772</pqid></control><display><type>article</type><title>A Behavioral Model for Exploration vs. Exploitation: Theoretical Framework and Experimental Evidence</title><source>Free E- Journals</source><creator>Ding, Jingying ; Feng, Yifan ; Rong, Ying</creator><creatorcontrib>Ding, Jingying ; Feng, Yifan ; Rong, Ying</creatorcontrib><description>How do people navigate the exploration-exploitation (EE) trade-off when making repeated choices with unknown rewards? We study this question through the lens of multi-armed bandit problems and introduce a novel behavioral model, Quantal Choice with Adaptive Reduction of Exploration (QCARE). It generalizes Thompson Sampling, allowing for a principled way to quantify the EE trade-off and reflect human decision-making patterns. The model adaptively reduces exploration as information accumulates, with the reduction rate serving as a parameter to quantify the EE trade-off dynamics. We theoretically analyze how varying reduction rates influence decision quality, shedding light on the effects of ``over-exploration'' and ``under-exploration.'' Empirically, we validate QCARE through experiments collecting behavioral data from human participants. QCARE not only captures critical behavioral patterns in the EE trade-off but also outperforms alternative models in predictive power. Our analysis reveals a behavioral tendency toward over-exploration.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Exploitation ; Sampling ; Tradeoffs</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ding, Jingying</creatorcontrib><creatorcontrib>Feng, Yifan</creatorcontrib><creatorcontrib>Rong, Ying</creatorcontrib><title>A Behavioral Model for Exploration vs. Exploitation: Theoretical Framework and Experimental Evidence</title><title>arXiv.org</title><description>How do people navigate the exploration-exploitation (EE) trade-off when making repeated choices with unknown rewards? We study this question through the lens of multi-armed bandit problems and introduce a novel behavioral model, Quantal Choice with Adaptive Reduction of Exploration (QCARE). It generalizes Thompson Sampling, allowing for a principled way to quantify the EE trade-off and reflect human decision-making patterns. The model adaptively reduces exploration as information accumulates, with the reduction rate serving as a parameter to quantify the EE trade-off dynamics. We theoretically analyze how varying reduction rates influence decision quality, shedding light on the effects of ``over-exploration'' and ``under-exploration.'' Empirically, we validate QCARE through experiments collecting behavioral data from human participants. QCARE not only captures critical behavioral patterns in the EE trade-off but also outperforms alternative models in predictive power. Our analysis reveals a behavioral tendency toward over-exploration.</description><subject>Algorithms</subject><subject>Exploitation</subject><subject>Sampling</subject><subject>Tradeoffs</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi8sOgjAURBsTE4nyD01cY2rLK-7UQNy4Y08auIQitNgW9POtjw9wNZk5ZxbIo4ztgzSkdIV8YzpCCI0TGkXMQ_URn6Dls1Ca9_iqauhxozTOnmPvJiuUxLPZfbuwn-GAixaUBisq98k1H-Ch9A1zWb890GIAaR3KZlGDrGCDlg3vDfi_XKNtnhXnSzBqdZ_A2LJTk5YOlTROwyQlSULZf9YLBt5GcQ</recordid><startdate>20241224</startdate><enddate>20241224</enddate><creator>Ding, Jingying</creator><creator>Feng, Yifan</creator><creator>Rong, Ying</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241224</creationdate><title>A Behavioral Model for Exploration vs. Exploitation: Theoretical Framework and Experimental Evidence</title><author>Ding, Jingying ; Feng, Yifan ; Rong, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26847807723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Exploitation</topic><topic>Sampling</topic><topic>Tradeoffs</topic><toplevel>online_resources</toplevel><creatorcontrib>Ding, Jingying</creatorcontrib><creatorcontrib>Feng, Yifan</creatorcontrib><creatorcontrib>Rong, Ying</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Jingying</au><au>Feng, Yifan</au><au>Rong, Ying</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Behavioral Model for Exploration vs. Exploitation: Theoretical Framework and Experimental Evidence</atitle><jtitle>arXiv.org</jtitle><date>2024-12-24</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>How do people navigate the exploration-exploitation (EE) trade-off when making repeated choices with unknown rewards? We study this question through the lens of multi-armed bandit problems and introduce a novel behavioral model, Quantal Choice with Adaptive Reduction of Exploration (QCARE). It generalizes Thompson Sampling, allowing for a principled way to quantify the EE trade-off and reflect human decision-making patterns. The model adaptively reduces exploration as information accumulates, with the reduction rate serving as a parameter to quantify the EE trade-off dynamics. We theoretically analyze how varying reduction rates influence decision quality, shedding light on the effects of ``over-exploration'' and ``under-exploration.'' Empirically, we validate QCARE through experiments collecting behavioral data from human participants. QCARE not only captures critical behavioral patterns in the EE trade-off but also outperforms alternative models in predictive power. Our analysis reveals a behavioral tendency toward over-exploration.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2684780772
source Free E- Journals
subjects Algorithms
Exploitation
Sampling
Tradeoffs
title A Behavioral Model for Exploration vs. Exploitation: Theoretical Framework and Experimental Evidence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A37%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Behavioral%20Model%20for%20Exploration%20vs.%20Exploitation:%20Theoretical%20Framework%20and%20Experimental%20Evidence&rft.jtitle=arXiv.org&rft.au=Ding,%20Jingying&rft.date=2024-12-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2684780772%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2684780772&rft_id=info:pmid/&rfr_iscdi=true