Complementary artificial intelligence designed to augment human discovery
Neither artificial intelligence designed to play Turing's imitation game, nor augmented intelligence built to maximize the human manipulation of information are tuned to accelerate innovation and improve humanity's collective advance against its greatest challenges. We reconceptualize and...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Sourati, Jamshid Evans, James |
description | Neither artificial intelligence designed to play Turing's imitation game, nor augmented intelligence built to maximize the human manipulation of information are tuned to accelerate innovation and improve humanity's collective advance against its greatest challenges. We reconceptualize and pilot beneficial AI to radically augment human understanding by complementing rather than competing with human cognitive capacity. Our approach to complementary intelligence builds on insights underlying the wisdom of crowds, which hinges on the independence and diversity of crowd members' information and approach. By programmatically incorporating information on the evolving distribution of scientific expertise from research papers, our approach follows the distribution of content in the literature while avoiding the scientific crowd and the hypotheses cognitively available to it. We use this approach to generate valuable predictions for what materials possess valuable energy-related properties (e.g., thermoelectricity), and what compounds possess valuable medical properties (e.g., asthma) that complement the human scientific crowd. We demonstrate that our complementary predictions, if identified by human scientists and inventors at all, are only discovered years further into the future. When we evaluate the promise of our predictions with first-principles equations, we demonstrate that increased complementarity of our predictions does not decrease and in some cases increases the probability that the predictions possess the targeted properties. In summary, by tuning AI to avoid the crowd, we can generate hypotheses unlikely to be imagined or pursued until the distant future and promise to punctuate scientific advance. By identifying and correcting for collective human bias, these models also suggest opportunities to improve human prediction by reformulating science education for discovery. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2684773618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2684773618</sourcerecordid><originalsourceid>FETCH-proquest_journals_26847736183</originalsourceid><addsrcrecordid>eNqNyssKgkAUgOEhCJLyHQ60FnTG216K2reXQY96ZJyxuQS-fQU9QKt_8X87FnEhsqTOOT-w2Lk5TVNeVrwoRMTujVlWhQtqL-0G0noaqCOpgLRHpWhE3SH06GjU2IM3IMP45TCFRWroyXXmhXY7sf0glcP41yM7Xy-P5pas1jwDOt_OJlj9WS0v67yqRJnV4j_1BhYyPYk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684773618</pqid></control><display><type>article</type><title>Complementary artificial intelligence designed to augment human discovery</title><source>Free E- Journals</source><creator>Sourati, Jamshid ; Evans, James</creator><creatorcontrib>Sourati, Jamshid ; Evans, James</creatorcontrib><description>Neither artificial intelligence designed to play Turing's imitation game, nor augmented intelligence built to maximize the human manipulation of information are tuned to accelerate innovation and improve humanity's collective advance against its greatest challenges. We reconceptualize and pilot beneficial AI to radically augment human understanding by complementing rather than competing with human cognitive capacity. Our approach to complementary intelligence builds on insights underlying the wisdom of crowds, which hinges on the independence and diversity of crowd members' information and approach. By programmatically incorporating information on the evolving distribution of scientific expertise from research papers, our approach follows the distribution of content in the literature while avoiding the scientific crowd and the hypotheses cognitively available to it. We use this approach to generate valuable predictions for what materials possess valuable energy-related properties (e.g., thermoelectricity), and what compounds possess valuable medical properties (e.g., asthma) that complement the human scientific crowd. We demonstrate that our complementary predictions, if identified by human scientists and inventors at all, are only discovered years further into the future. When we evaluate the promise of our predictions with first-principles equations, we demonstrate that increased complementarity of our predictions does not decrease and in some cases increases the probability that the predictions possess the targeted properties. In summary, by tuning AI to avoid the crowd, we can generate hypotheses unlikely to be imagined or pursued until the distant future and promise to punctuate scientific advance. By identifying and correcting for collective human bias, these models also suggest opportunities to improve human prediction by reformulating science education for discovery.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial intelligence ; Asthma ; First principles ; Human bias ; Hypotheses ; Inventors ; Scientific papers</subject><ispartof>arXiv.org, 2022-07</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Sourati, Jamshid</creatorcontrib><creatorcontrib>Evans, James</creatorcontrib><title>Complementary artificial intelligence designed to augment human discovery</title><title>arXiv.org</title><description>Neither artificial intelligence designed to play Turing's imitation game, nor augmented intelligence built to maximize the human manipulation of information are tuned to accelerate innovation and improve humanity's collective advance against its greatest challenges. We reconceptualize and pilot beneficial AI to radically augment human understanding by complementing rather than competing with human cognitive capacity. Our approach to complementary intelligence builds on insights underlying the wisdom of crowds, which hinges on the independence and diversity of crowd members' information and approach. By programmatically incorporating information on the evolving distribution of scientific expertise from research papers, our approach follows the distribution of content in the literature while avoiding the scientific crowd and the hypotheses cognitively available to it. We use this approach to generate valuable predictions for what materials possess valuable energy-related properties (e.g., thermoelectricity), and what compounds possess valuable medical properties (e.g., asthma) that complement the human scientific crowd. We demonstrate that our complementary predictions, if identified by human scientists and inventors at all, are only discovered years further into the future. When we evaluate the promise of our predictions with first-principles equations, we demonstrate that increased complementarity of our predictions does not decrease and in some cases increases the probability that the predictions possess the targeted properties. In summary, by tuning AI to avoid the crowd, we can generate hypotheses unlikely to be imagined or pursued until the distant future and promise to punctuate scientific advance. By identifying and correcting for collective human bias, these models also suggest opportunities to improve human prediction by reformulating science education for discovery.</description><subject>Artificial intelligence</subject><subject>Asthma</subject><subject>First principles</subject><subject>Human bias</subject><subject>Hypotheses</subject><subject>Inventors</subject><subject>Scientific papers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyssKgkAUgOEhCJLyHQ60FnTG216K2reXQY96ZJyxuQS-fQU9QKt_8X87FnEhsqTOOT-w2Lk5TVNeVrwoRMTujVlWhQtqL-0G0noaqCOpgLRHpWhE3SH06GjU2IM3IMP45TCFRWroyXXmhXY7sf0glcP41yM7Xy-P5pas1jwDOt_OJlj9WS0v67yqRJnV4j_1BhYyPYk</recordid><startdate>20220702</startdate><enddate>20220702</enddate><creator>Sourati, Jamshid</creator><creator>Evans, James</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220702</creationdate><title>Complementary artificial intelligence designed to augment human discovery</title><author>Sourati, Jamshid ; Evans, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26847736183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Asthma</topic><topic>First principles</topic><topic>Human bias</topic><topic>Hypotheses</topic><topic>Inventors</topic><topic>Scientific papers</topic><toplevel>online_resources</toplevel><creatorcontrib>Sourati, Jamshid</creatorcontrib><creatorcontrib>Evans, James</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sourati, Jamshid</au><au>Evans, James</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Complementary artificial intelligence designed to augment human discovery</atitle><jtitle>arXiv.org</jtitle><date>2022-07-02</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Neither artificial intelligence designed to play Turing's imitation game, nor augmented intelligence built to maximize the human manipulation of information are tuned to accelerate innovation and improve humanity's collective advance against its greatest challenges. We reconceptualize and pilot beneficial AI to radically augment human understanding by complementing rather than competing with human cognitive capacity. Our approach to complementary intelligence builds on insights underlying the wisdom of crowds, which hinges on the independence and diversity of crowd members' information and approach. By programmatically incorporating information on the evolving distribution of scientific expertise from research papers, our approach follows the distribution of content in the literature while avoiding the scientific crowd and the hypotheses cognitively available to it. We use this approach to generate valuable predictions for what materials possess valuable energy-related properties (e.g., thermoelectricity), and what compounds possess valuable medical properties (e.g., asthma) that complement the human scientific crowd. We demonstrate that our complementary predictions, if identified by human scientists and inventors at all, are only discovered years further into the future. When we evaluate the promise of our predictions with first-principles equations, we demonstrate that increased complementarity of our predictions does not decrease and in some cases increases the probability that the predictions possess the targeted properties. In summary, by tuning AI to avoid the crowd, we can generate hypotheses unlikely to be imagined or pursued until the distant future and promise to punctuate scientific advance. By identifying and correcting for collective human bias, these models also suggest opportunities to improve human prediction by reformulating science education for discovery.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2684773618 |
source | Free E- Journals |
subjects | Artificial intelligence Asthma First principles Human bias Hypotheses Inventors Scientific papers |
title | Complementary artificial intelligence designed to augment human discovery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T09%3A19%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Complementary%20artificial%20intelligence%20designed%20to%20augment%20human%20discovery&rft.jtitle=arXiv.org&rft.au=Sourati,%20Jamshid&rft.date=2022-07-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2684773618%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2684773618&rft_id=info:pmid/&rfr_iscdi=true |