Metamaterial eigenmodes beyond homogenization

Metamaterial homogenization theories usually start with crude approximations that are valid in certain limits in zero order, such as small frequencies, wave vectors and material fill fractions. In some cases they remain surprisingly robust exceeding their initial assumptions, such as the well-establ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optical materials express 2022-07, Vol.12 (7), p.2747
Hauptverfasser: Günzler, Antonio, Schumacher, Cedric, Steiner, Ullrich, Saba, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 2747
container_title Optical materials express
container_volume 12
creator Günzler, Antonio
Schumacher, Cedric
Steiner, Ullrich
Saba, Matthias
description Metamaterial homogenization theories usually start with crude approximations that are valid in certain limits in zero order, such as small frequencies, wave vectors and material fill fractions. In some cases they remain surprisingly robust exceeding their initial assumptions, such as the well-established Maxwell-Garnett theory for elliptical inclusions that can produce reliable results for fill fractions far above its theoretical limitations. We here present a rigorous solution of Maxwell’s equations in binary periodic materials employing a combined Greens-Galerkin procedure to obtain a low-dimensional eigenproblem for the evanescent Floquet eigenmodes of the material. In its general form, our method provides an accurate solution of the multi-valued complex Floquet bandstructure, which currently cannot be obtained with established solvers. It is thus shown to be valid in regimes where homogenization theories naturally break down. For small frequencies and wave numbers in lowest order, our method simplifies to the Maxwell-Garnett result for 2D cylinder and 3D sphere packings. It therefore provides the missing explanation why Maxwell-Garnett works well up to extremely high fill fractions of approximately 50% depending on the constituent materials, provided the inclusions are arranged on an isotropic lattice.
doi_str_mv 10.1364/OME.457134
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2684648065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2684648065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-143e699891dbaaa25175e1571cb222a20d4428ec72d119e716b5911d21f5b41d3</originalsourceid><addsrcrecordid>eNpNkM1Lw0AQxRdRsNRe_AsC3oTUndmPZI9S6ge09KLnZZOdaEqTrbvpof71RuLBd5nH4zEz_Bi7Bb4EoeXDbrteSlWAkBdshqBMLozgl__8NVuktOejlMYSccbyLQ2ucwPF1h0yaj-o74KnlFV0Dr3PPkMXxqz9dkMb-ht21bhDosXfnLP3p_Xb6iXf7J5fV4-bvEajhhykIG1MacBXzjlUUCiC8bO6QkSH3EuJJdUFegBDBehKGQCP0KhKghdzdjftPcbwdaI02H04xX48aVGXUsuSazW27qdWHUNKkRp7jG3n4tkCt79E7EjETkTED3ECUQ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684648065</pqid></control><display><type>article</type><title>Metamaterial eigenmodes beyond homogenization</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Günzler, Antonio ; Schumacher, Cedric ; Steiner, Ullrich ; Saba, Matthias</creator><creatorcontrib>Günzler, Antonio ; Schumacher, Cedric ; Steiner, Ullrich ; Saba, Matthias</creatorcontrib><description>Metamaterial homogenization theories usually start with crude approximations that are valid in certain limits in zero order, such as small frequencies, wave vectors and material fill fractions. In some cases they remain surprisingly robust exceeding their initial assumptions, such as the well-established Maxwell-Garnett theory for elliptical inclusions that can produce reliable results for fill fractions far above its theoretical limitations. We here present a rigorous solution of Maxwell’s equations in binary periodic materials employing a combined Greens-Galerkin procedure to obtain a low-dimensional eigenproblem for the evanescent Floquet eigenmodes of the material. In its general form, our method provides an accurate solution of the multi-valued complex Floquet bandstructure, which currently cannot be obtained with established solvers. It is thus shown to be valid in regimes where homogenization theories naturally break down. For small frequencies and wave numbers in lowest order, our method simplifies to the Maxwell-Garnett result for 2D cylinder and 3D sphere packings. It therefore provides the missing explanation why Maxwell-Garnett works well up to extremely high fill fractions of approximately 50% depending on the constituent materials, provided the inclusions are arranged on an isotropic lattice.</description><identifier>ISSN: 2159-3930</identifier><identifier>EISSN: 2159-3930</identifier><identifier>DOI: 10.1364/OME.457134</identifier><language>eng</language><publisher>Washington: Optical Society of America</publisher><subject>Homogenization ; Inclusions ; Maxwell's equations ; Metamaterials</subject><ispartof>Optical materials express, 2022-07, Vol.12 (7), p.2747</ispartof><rights>Copyright Optical Society of America Jul 1, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-143e699891dbaaa25175e1571cb222a20d4428ec72d119e716b5911d21f5b41d3</citedby><cites>FETCH-LOGICAL-c295t-143e699891dbaaa25175e1571cb222a20d4428ec72d119e716b5911d21f5b41d3</cites><orcidid>0000-0001-5281-4506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Günzler, Antonio</creatorcontrib><creatorcontrib>Schumacher, Cedric</creatorcontrib><creatorcontrib>Steiner, Ullrich</creatorcontrib><creatorcontrib>Saba, Matthias</creatorcontrib><title>Metamaterial eigenmodes beyond homogenization</title><title>Optical materials express</title><description>Metamaterial homogenization theories usually start with crude approximations that are valid in certain limits in zero order, such as small frequencies, wave vectors and material fill fractions. In some cases they remain surprisingly robust exceeding their initial assumptions, such as the well-established Maxwell-Garnett theory for elliptical inclusions that can produce reliable results for fill fractions far above its theoretical limitations. We here present a rigorous solution of Maxwell’s equations in binary periodic materials employing a combined Greens-Galerkin procedure to obtain a low-dimensional eigenproblem for the evanescent Floquet eigenmodes of the material. In its general form, our method provides an accurate solution of the multi-valued complex Floquet bandstructure, which currently cannot be obtained with established solvers. It is thus shown to be valid in regimes where homogenization theories naturally break down. For small frequencies and wave numbers in lowest order, our method simplifies to the Maxwell-Garnett result for 2D cylinder and 3D sphere packings. It therefore provides the missing explanation why Maxwell-Garnett works well up to extremely high fill fractions of approximately 50% depending on the constituent materials, provided the inclusions are arranged on an isotropic lattice.</description><subject>Homogenization</subject><subject>Inclusions</subject><subject>Maxwell's equations</subject><subject>Metamaterials</subject><issn>2159-3930</issn><issn>2159-3930</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkM1Lw0AQxRdRsNRe_AsC3oTUndmPZI9S6ge09KLnZZOdaEqTrbvpof71RuLBd5nH4zEz_Bi7Bb4EoeXDbrteSlWAkBdshqBMLozgl__8NVuktOejlMYSccbyLQ2ucwPF1h0yaj-o74KnlFV0Dr3PPkMXxqz9dkMb-ht21bhDosXfnLP3p_Xb6iXf7J5fV4-bvEajhhykIG1MacBXzjlUUCiC8bO6QkSH3EuJJdUFegBDBehKGQCP0KhKghdzdjftPcbwdaI02H04xX48aVGXUsuSazW27qdWHUNKkRp7jG3n4tkCt79E7EjETkTED3ECUQ8</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Günzler, Antonio</creator><creator>Schumacher, Cedric</creator><creator>Steiner, Ullrich</creator><creator>Saba, Matthias</creator><general>Optical Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5281-4506</orcidid></search><sort><creationdate>20220701</creationdate><title>Metamaterial eigenmodes beyond homogenization</title><author>Günzler, Antonio ; Schumacher, Cedric ; Steiner, Ullrich ; Saba, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-143e699891dbaaa25175e1571cb222a20d4428ec72d119e716b5911d21f5b41d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Homogenization</topic><topic>Inclusions</topic><topic>Maxwell's equations</topic><topic>Metamaterials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Günzler, Antonio</creatorcontrib><creatorcontrib>Schumacher, Cedric</creatorcontrib><creatorcontrib>Steiner, Ullrich</creatorcontrib><creatorcontrib>Saba, Matthias</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optical materials express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Günzler, Antonio</au><au>Schumacher, Cedric</au><au>Steiner, Ullrich</au><au>Saba, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metamaterial eigenmodes beyond homogenization</atitle><jtitle>Optical materials express</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>12</volume><issue>7</issue><spage>2747</spage><pages>2747-</pages><issn>2159-3930</issn><eissn>2159-3930</eissn><abstract>Metamaterial homogenization theories usually start with crude approximations that are valid in certain limits in zero order, such as small frequencies, wave vectors and material fill fractions. In some cases they remain surprisingly robust exceeding their initial assumptions, such as the well-established Maxwell-Garnett theory for elliptical inclusions that can produce reliable results for fill fractions far above its theoretical limitations. We here present a rigorous solution of Maxwell’s equations in binary periodic materials employing a combined Greens-Galerkin procedure to obtain a low-dimensional eigenproblem for the evanescent Floquet eigenmodes of the material. In its general form, our method provides an accurate solution of the multi-valued complex Floquet bandstructure, which currently cannot be obtained with established solvers. It is thus shown to be valid in regimes where homogenization theories naturally break down. For small frequencies and wave numbers in lowest order, our method simplifies to the Maxwell-Garnett result for 2D cylinder and 3D sphere packings. It therefore provides the missing explanation why Maxwell-Garnett works well up to extremely high fill fractions of approximately 50% depending on the constituent materials, provided the inclusions are arranged on an isotropic lattice.</abstract><cop>Washington</cop><pub>Optical Society of America</pub><doi>10.1364/OME.457134</doi><orcidid>https://orcid.org/0000-0001-5281-4506</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2159-3930
ispartof Optical materials express, 2022-07, Vol.12 (7), p.2747
issn 2159-3930
2159-3930
language eng
recordid cdi_proquest_journals_2684648065
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Homogenization
Inclusions
Maxwell's equations
Metamaterials
title Metamaterial eigenmodes beyond homogenization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A58%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metamaterial%20eigenmodes%20beyond%20homogenization&rft.jtitle=Optical%20materials%20express&rft.au=G%C3%BCnzler,%20Antonio&rft.date=2022-07-01&rft.volume=12&rft.issue=7&rft.spage=2747&rft.pages=2747-&rft.issn=2159-3930&rft.eissn=2159-3930&rft_id=info:doi/10.1364/OME.457134&rft_dat=%3Cproquest_cross%3E2684648065%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2684648065&rft_id=info:pmid/&rfr_iscdi=true