First and second critical exponents for an inhomogeneous Schrödinger equation with combined nonlinearities

We study the large-time behavior of solutions for the inhomogeneous nonlinear Schrödinger equation i u t + Δ u = λ | u | p + μ | ∇ u | q + w ( x ) , t > 0 , x ∈ R N , where N ≥ 1 , p , q > 1 , λ , μ ∈ C , λ ≠ 0 , and u ( 0 , · ) , w ∈ L loc 1 ( R N , C ) . We consider both the cases where μ =...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Physik 2022-08, Vol.73 (4), Article 157
Hauptverfasser: Alotaibi, Munirah, Jleli, Mohamed, Samet, Bessem, Vetro, Calogero
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Zeitschrift für angewandte Mathematik und Physik
container_volume 73
creator Alotaibi, Munirah
Jleli, Mohamed
Samet, Bessem
Vetro, Calogero
description We study the large-time behavior of solutions for the inhomogeneous nonlinear Schrödinger equation i u t + Δ u = λ | u | p + μ | ∇ u | q + w ( x ) , t > 0 , x ∈ R N , where N ≥ 1 , p , q > 1 , λ , μ ∈ C , λ ≠ 0 , and u ( 0 , · ) , w ∈ L loc 1 ( R N , C ) . We consider both the cases where μ = 0 and μ ≠ 0 , respectively. We establish existence/nonexistence of global weak solutions. In each studied case, we compute the critical exponents in the sense of Fujita, and Lee and Ni. When μ ≠ 0 , we show that the nonlinearity | ∇ u | q induces an interesting phenomenon of discontinuity of the Fujita critical exponent.
doi_str_mv 10.1007/s00033-022-01784-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2684589537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2684589537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-5896cb9798ee4755a90b731b89dda977e5e29ff97863ae451204720628e2201c3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4CngeXWS7G42RylWhYIH9RzS7Gyb2iZtskX7Yr6AL2ZqBW-eZg7f_w3zE3LJ4JoByJsEAEIUwHkBTDZlsTsiA1ZyKBQIdUwGAGVZcC6rU3KW0iLjkoEYkLexi6mnxrc0oQ152Oh6Z82S4sc6ePR9ol2ImaDOz8MqzNBj2Cb6bOfx67N1foaR4mZrehc8fXf9nNqwmjqPLfXBL_Ni9kpM5-SkM8uEF79zSF7Hdy-jh2LydP84up0UVtSiL6pG1XaqpGoQS1lVRsFUCjZtVNsaJSVWyFXXKdnUwmBZMQ6l5FDzBjkHZsWQXB286xg2W0y9XoRt9Pmk5nVTZn8lZKb4gbIxpBSx0-voVibuNAO9L1UfStW5VP1Tqt7lkDiEUob3n_-p_0l9A5PSfIE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684589537</pqid></control><display><type>article</type><title>First and second critical exponents for an inhomogeneous Schrödinger equation with combined nonlinearities</title><source>SpringerNature Journals</source><creator>Alotaibi, Munirah ; Jleli, Mohamed ; Samet, Bessem ; Vetro, Calogero</creator><creatorcontrib>Alotaibi, Munirah ; Jleli, Mohamed ; Samet, Bessem ; Vetro, Calogero</creatorcontrib><description>We study the large-time behavior of solutions for the inhomogeneous nonlinear Schrödinger equation i u t + Δ u = λ | u | p + μ | ∇ u | q + w ( x ) , t &gt; 0 , x ∈ R N , where N ≥ 1 , p , q &gt; 1 , λ , μ ∈ C , λ ≠ 0 , and u ( 0 , · ) , w ∈ L loc 1 ( R N , C ) . We consider both the cases where μ = 0 and μ ≠ 0 , respectively. We establish existence/nonexistence of global weak solutions. In each studied case, we compute the critical exponents in the sense of Fujita, and Lee and Ni. When μ ≠ 0 , we show that the nonlinearity | ∇ u | q induces an interesting phenomenon of discontinuity of the Fujita critical exponent.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-022-01784-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Engineering ; Exponents ; Mathematical Methods in Physics ; Nonlinearity ; Schrodinger equation ; Theoretical and Applied Mechanics</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2022-08, Vol.73 (4), Article 157</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-5896cb9798ee4755a90b731b89dda977e5e29ff97863ae451204720628e2201c3</citedby><cites>FETCH-LOGICAL-c363t-5896cb9798ee4755a90b731b89dda977e5e29ff97863ae451204720628e2201c3</cites><orcidid>0000-0001-5836-6847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00033-022-01784-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00033-022-01784-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Alotaibi, Munirah</creatorcontrib><creatorcontrib>Jleli, Mohamed</creatorcontrib><creatorcontrib>Samet, Bessem</creatorcontrib><creatorcontrib>Vetro, Calogero</creatorcontrib><title>First and second critical exponents for an inhomogeneous Schrödinger equation with combined nonlinearities</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>We study the large-time behavior of solutions for the inhomogeneous nonlinear Schrödinger equation i u t + Δ u = λ | u | p + μ | ∇ u | q + w ( x ) , t &gt; 0 , x ∈ R N , where N ≥ 1 , p , q &gt; 1 , λ , μ ∈ C , λ ≠ 0 , and u ( 0 , · ) , w ∈ L loc 1 ( R N , C ) . We consider both the cases where μ = 0 and μ ≠ 0 , respectively. We establish existence/nonexistence of global weak solutions. In each studied case, we compute the critical exponents in the sense of Fujita, and Lee and Ni. When μ ≠ 0 , we show that the nonlinearity | ∇ u | q induces an interesting phenomenon of discontinuity of the Fujita critical exponent.</description><subject>Engineering</subject><subject>Exponents</subject><subject>Mathematical Methods in Physics</subject><subject>Nonlinearity</subject><subject>Schrodinger equation</subject><subject>Theoretical and Applied Mechanics</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMFKAzEQhoMoWKsv4CngeXWS7G42RylWhYIH9RzS7Gyb2iZtskX7Yr6AL2ZqBW-eZg7f_w3zE3LJ4JoByJsEAEIUwHkBTDZlsTsiA1ZyKBQIdUwGAGVZcC6rU3KW0iLjkoEYkLexi6mnxrc0oQ152Oh6Z82S4sc6ePR9ol2ImaDOz8MqzNBj2Cb6bOfx67N1foaR4mZrehc8fXf9nNqwmjqPLfXBL_Ni9kpM5-SkM8uEF79zSF7Hdy-jh2LydP84up0UVtSiL6pG1XaqpGoQS1lVRsFUCjZtVNsaJSVWyFXXKdnUwmBZMQ6l5FDzBjkHZsWQXB286xg2W0y9XoRt9Pmk5nVTZn8lZKb4gbIxpBSx0-voVibuNAO9L1UfStW5VP1Tqt7lkDiEUob3n_-p_0l9A5PSfIE</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Alotaibi, Munirah</creator><creator>Jleli, Mohamed</creator><creator>Samet, Bessem</creator><creator>Vetro, Calogero</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5836-6847</orcidid></search><sort><creationdate>20220801</creationdate><title>First and second critical exponents for an inhomogeneous Schrödinger equation with combined nonlinearities</title><author>Alotaibi, Munirah ; Jleli, Mohamed ; Samet, Bessem ; Vetro, Calogero</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-5896cb9798ee4755a90b731b89dda977e5e29ff97863ae451204720628e2201c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Engineering</topic><topic>Exponents</topic><topic>Mathematical Methods in Physics</topic><topic>Nonlinearity</topic><topic>Schrodinger equation</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alotaibi, Munirah</creatorcontrib><creatorcontrib>Jleli, Mohamed</creatorcontrib><creatorcontrib>Samet, Bessem</creatorcontrib><creatorcontrib>Vetro, Calogero</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alotaibi, Munirah</au><au>Jleli, Mohamed</au><au>Samet, Bessem</au><au>Vetro, Calogero</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First and second critical exponents for an inhomogeneous Schrödinger equation with combined nonlinearities</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>73</volume><issue>4</issue><artnum>157</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>We study the large-time behavior of solutions for the inhomogeneous nonlinear Schrödinger equation i u t + Δ u = λ | u | p + μ | ∇ u | q + w ( x ) , t &gt; 0 , x ∈ R N , where N ≥ 1 , p , q &gt; 1 , λ , μ ∈ C , λ ≠ 0 , and u ( 0 , · ) , w ∈ L loc 1 ( R N , C ) . We consider both the cases where μ = 0 and μ ≠ 0 , respectively. We establish existence/nonexistence of global weak solutions. In each studied case, we compute the critical exponents in the sense of Fujita, and Lee and Ni. When μ ≠ 0 , we show that the nonlinearity | ∇ u | q induces an interesting phenomenon of discontinuity of the Fujita critical exponent.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-022-01784-y</doi><orcidid>https://orcid.org/0000-0001-5836-6847</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-2275
ispartof Zeitschrift für angewandte Mathematik und Physik, 2022-08, Vol.73 (4), Article 157
issn 0044-2275
1420-9039
language eng
recordid cdi_proquest_journals_2684589537
source SpringerNature Journals
subjects Engineering
Exponents
Mathematical Methods in Physics
Nonlinearity
Schrodinger equation
Theoretical and Applied Mechanics
title First and second critical exponents for an inhomogeneous Schrödinger equation with combined nonlinearities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A03%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20and%20second%20critical%20exponents%20for%20an%20inhomogeneous%20Schr%C3%B6dinger%20equation%20with%20combined%20nonlinearities&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Alotaibi,%20Munirah&rft.date=2022-08-01&rft.volume=73&rft.issue=4&rft.artnum=157&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-022-01784-y&rft_dat=%3Cproquest_cross%3E2684589537%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2684589537&rft_id=info:pmid/&rfr_iscdi=true