First and second critical exponents for an inhomogeneous Schrödinger equation with combined nonlinearities
We study the large-time behavior of solutions for the inhomogeneous nonlinear Schrödinger equation i u t + Δ u = λ | u | p + μ | ∇ u | q + w ( x ) , t > 0 , x ∈ R N , where N ≥ 1 , p , q > 1 , λ , μ ∈ C , λ ≠ 0 , and u ( 0 , · ) , w ∈ L loc 1 ( R N , C ) . We consider both the cases where μ =...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2022-08, Vol.73 (4), Article 157 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the large-time behavior of solutions for the inhomogeneous nonlinear Schrödinger equation
i
u
t
+
Δ
u
=
λ
|
u
|
p
+
μ
|
∇
u
|
q
+
w
(
x
)
,
t
>
0
,
x
∈
R
N
,
where
N
≥
1
,
p
,
q
>
1
,
λ
,
μ
∈
C
,
λ
≠
0
, and
u
(
0
,
·
)
,
w
∈
L
loc
1
(
R
N
,
C
)
. We consider both the cases where
μ
=
0
and
μ
≠
0
, respectively. We establish existence/nonexistence of global weak solutions. In each studied case, we compute the critical exponents in the sense of Fujita, and Lee and Ni. When
μ
≠
0
, we show that the nonlinearity
|
∇
u
|
q
induces an interesting phenomenon of discontinuity of the Fujita critical exponent. |
---|---|
ISSN: | 0044-2275 1420-9039 |
DOI: | 10.1007/s00033-022-01784-y |