Modelling adsorption based on an isoreticular MOF‐series of IFPs—Part II: Dynamic adsorption in fixed beds

Based on experimental pure component data for the characterization of the isostructural imidazolate framework Potsdam (IFP) series reported in Part I, a model for the simulation of non‐isothermal dynamic adsorption of CO2/CH4‐mixtures in fixed‐bed columns is presented in this Part II. The robustness...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of chemical engineering 2022-08, Vol.100 (8), p.1902-1919
Hauptverfasser: Otter, Dirk, Dieler, Max, Dänekas, Volker, Geitner, Christian, Krätz, Lorenz, Holdt, Hans‐Jürgen, Bart, Hans‐Jörg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1919
container_issue 8
container_start_page 1902
container_title Canadian journal of chemical engineering
container_volume 100
creator Otter, Dirk
Dieler, Max
Dänekas, Volker
Geitner, Christian
Krätz, Lorenz
Holdt, Hans‐Jürgen
Bart, Hans‐Jörg
description Based on experimental pure component data for the characterization of the isostructural imidazolate framework Potsdam (IFP) series reported in Part I, a model for the simulation of non‐isothermal dynamic adsorption of CO2/CH4‐mixtures in fixed‐bed columns is presented in this Part II. The robustness of the model is examined and validated, by comparison to experimental breakthrough data at different process conditions, such as varying concentration, temperature, and pressure. Thereby, different predictive methods for the estimation of adsorption equilibria of mixtures are compared (RAST, IAST, ML). The results show that ideal behaviour can be assumed with good accuracy for the system under consideration, except for IFP‐2, which shows significant deviations at increased pressures and temperatures. A detailed kinetic analysis reveals that mass transfer is significantly influenced by micropore diffusion. Thus, only for IFP‐1 the dynamic separation of CO2 and CH4 is equilibrium‐driven, while for the remaining IFPs the kinetic regime dominates the process, which in some cases increases the separation efficiency (IFP‐2 to ‐7) but can also inhibit it (IFP‐8). The determined intracrystalline diffusion coefficients show very good agreement with values for metal organic framework (MOF) compounds of similar structure reported in the literature.
doi_str_mv 10.1002/cjce.24288
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2684330023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2684330023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3378-a8bd27b2317c45cbcea2ed5e11dc45a08068f1af36b17b25cb94c1e771f65f143</originalsourceid><addsrcrecordid>eNp9kL9OwzAQxi0EEqWw8ASW2JBS_K-Jw4ZCC0Gt2gEkNstxbOQqTYqdqnTrIzDwhH0SXMLAxHT3nX73ne4D4BKjAUaI3KiF0gPCCOdHoIdTmkYIp6_HoIcQ4hFDlJ2CM-8XQRLEcA_U06bUVWXrNyhL37hVa5saFtLrEoZG1tCGqW6tWlfSwelsvN99eu2s9rAxMB_P_X73NZeuhXl-C--3tVxa9dfL1tDYj2BX6NKfgxMjK68vfmsfvIxHz9ljNJk95NndJFKUJjySvChJUhCKE8WGqlBaEl0ONcZl0BJxFHODpaFxgQMWiJQprJMEm3hoMKN9cNX5rlzzvta-FYtm7epwUpCYM0rD_zRQ1x2lXOO900asnF1KtxUYiUOe4pCn-MkzwLiDN7bS239IkT1lo27nG26veg4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684330023</pqid></control><display><type>article</type><title>Modelling adsorption based on an isoreticular MOF‐series of IFPs—Part II: Dynamic adsorption in fixed beds</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Otter, Dirk ; Dieler, Max ; Dänekas, Volker ; Geitner, Christian ; Krätz, Lorenz ; Holdt, Hans‐Jürgen ; Bart, Hans‐Jörg</creator><creatorcontrib>Otter, Dirk ; Dieler, Max ; Dänekas, Volker ; Geitner, Christian ; Krätz, Lorenz ; Holdt, Hans‐Jürgen ; Bart, Hans‐Jörg</creatorcontrib><description>Based on experimental pure component data for the characterization of the isostructural imidazolate framework Potsdam (IFP) series reported in Part I, a model for the simulation of non‐isothermal dynamic adsorption of CO2/CH4‐mixtures in fixed‐bed columns is presented in this Part II. The robustness of the model is examined and validated, by comparison to experimental breakthrough data at different process conditions, such as varying concentration, temperature, and pressure. Thereby, different predictive methods for the estimation of adsorption equilibria of mixtures are compared (RAST, IAST, ML). The results show that ideal behaviour can be assumed with good accuracy for the system under consideration, except for IFP‐2, which shows significant deviations at increased pressures and temperatures. A detailed kinetic analysis reveals that mass transfer is significantly influenced by micropore diffusion. Thus, only for IFP‐1 the dynamic separation of CO2 and CH4 is equilibrium‐driven, while for the remaining IFPs the kinetic regime dominates the process, which in some cases increases the separation efficiency (IFP‐2 to ‐7) but can also inhibit it (IFP‐8). The determined intracrystalline diffusion coefficients show very good agreement with values for metal organic framework (MOF) compounds of similar structure reported in the literature.</description><identifier>ISSN: 0008-4034</identifier><identifier>EISSN: 1939-019X</identifier><identifier>DOI: 10.1002/cjce.24288</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Adsorption ; adsorption kinetics ; breakthrough experiments ; Carbon dioxide ; Columns (process) ; dynamic adsorption ; Fixed beds ; IAST/RAST ; Mass transfer ; Metal-organic frameworks ; Methane ; Mixtures ; multicomponent adsorption equilibria ; Separation</subject><ispartof>Canadian journal of chemical engineering, 2022-08, Vol.100 (8), p.1902-1919</ispartof><rights>2021 The Authors. The published by Wiley Periodicals LLC on behalf of Canadian Society for Chemical Engineering.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3378-a8bd27b2317c45cbcea2ed5e11dc45a08068f1af36b17b25cb94c1e771f65f143</citedby><cites>FETCH-LOGICAL-c3378-a8bd27b2317c45cbcea2ed5e11dc45a08068f1af36b17b25cb94c1e771f65f143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcjce.24288$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcjce.24288$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Otter, Dirk</creatorcontrib><creatorcontrib>Dieler, Max</creatorcontrib><creatorcontrib>Dänekas, Volker</creatorcontrib><creatorcontrib>Geitner, Christian</creatorcontrib><creatorcontrib>Krätz, Lorenz</creatorcontrib><creatorcontrib>Holdt, Hans‐Jürgen</creatorcontrib><creatorcontrib>Bart, Hans‐Jörg</creatorcontrib><title>Modelling adsorption based on an isoreticular MOF‐series of IFPs—Part II: Dynamic adsorption in fixed beds</title><title>Canadian journal of chemical engineering</title><description>Based on experimental pure component data for the characterization of the isostructural imidazolate framework Potsdam (IFP) series reported in Part I, a model for the simulation of non‐isothermal dynamic adsorption of CO2/CH4‐mixtures in fixed‐bed columns is presented in this Part II. The robustness of the model is examined and validated, by comparison to experimental breakthrough data at different process conditions, such as varying concentration, temperature, and pressure. Thereby, different predictive methods for the estimation of adsorption equilibria of mixtures are compared (RAST, IAST, ML). The results show that ideal behaviour can be assumed with good accuracy for the system under consideration, except for IFP‐2, which shows significant deviations at increased pressures and temperatures. A detailed kinetic analysis reveals that mass transfer is significantly influenced by micropore diffusion. Thus, only for IFP‐1 the dynamic separation of CO2 and CH4 is equilibrium‐driven, while for the remaining IFPs the kinetic regime dominates the process, which in some cases increases the separation efficiency (IFP‐2 to ‐7) but can also inhibit it (IFP‐8). The determined intracrystalline diffusion coefficients show very good agreement with values for metal organic framework (MOF) compounds of similar structure reported in the literature.</description><subject>Adsorption</subject><subject>adsorption kinetics</subject><subject>breakthrough experiments</subject><subject>Carbon dioxide</subject><subject>Columns (process)</subject><subject>dynamic adsorption</subject><subject>Fixed beds</subject><subject>IAST/RAST</subject><subject>Mass transfer</subject><subject>Metal-organic frameworks</subject><subject>Methane</subject><subject>Mixtures</subject><subject>multicomponent adsorption equilibria</subject><subject>Separation</subject><issn>0008-4034</issn><issn>1939-019X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kL9OwzAQxi0EEqWw8ASW2JBS_K-Jw4ZCC0Gt2gEkNstxbOQqTYqdqnTrIzDwhH0SXMLAxHT3nX73ne4D4BKjAUaI3KiF0gPCCOdHoIdTmkYIp6_HoIcQ4hFDlJ2CM-8XQRLEcA_U06bUVWXrNyhL37hVa5saFtLrEoZG1tCGqW6tWlfSwelsvN99eu2s9rAxMB_P_X73NZeuhXl-C--3tVxa9dfL1tDYj2BX6NKfgxMjK68vfmsfvIxHz9ljNJk95NndJFKUJjySvChJUhCKE8WGqlBaEl0ONcZl0BJxFHODpaFxgQMWiJQprJMEm3hoMKN9cNX5rlzzvta-FYtm7epwUpCYM0rD_zRQ1x2lXOO900asnF1KtxUYiUOe4pCn-MkzwLiDN7bS239IkT1lo27nG26veg4</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Otter, Dirk</creator><creator>Dieler, Max</creator><creator>Dänekas, Volker</creator><creator>Geitner, Christian</creator><creator>Krätz, Lorenz</creator><creator>Holdt, Hans‐Jürgen</creator><creator>Bart, Hans‐Jörg</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>202208</creationdate><title>Modelling adsorption based on an isoreticular MOF‐series of IFPs—Part II: Dynamic adsorption in fixed beds</title><author>Otter, Dirk ; Dieler, Max ; Dänekas, Volker ; Geitner, Christian ; Krätz, Lorenz ; Holdt, Hans‐Jürgen ; Bart, Hans‐Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3378-a8bd27b2317c45cbcea2ed5e11dc45a08068f1af36b17b25cb94c1e771f65f143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adsorption</topic><topic>adsorption kinetics</topic><topic>breakthrough experiments</topic><topic>Carbon dioxide</topic><topic>Columns (process)</topic><topic>dynamic adsorption</topic><topic>Fixed beds</topic><topic>IAST/RAST</topic><topic>Mass transfer</topic><topic>Metal-organic frameworks</topic><topic>Methane</topic><topic>Mixtures</topic><topic>multicomponent adsorption equilibria</topic><topic>Separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Otter, Dirk</creatorcontrib><creatorcontrib>Dieler, Max</creatorcontrib><creatorcontrib>Dänekas, Volker</creatorcontrib><creatorcontrib>Geitner, Christian</creatorcontrib><creatorcontrib>Krätz, Lorenz</creatorcontrib><creatorcontrib>Holdt, Hans‐Jürgen</creatorcontrib><creatorcontrib>Bart, Hans‐Jörg</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Canadian journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Otter, Dirk</au><au>Dieler, Max</au><au>Dänekas, Volker</au><au>Geitner, Christian</au><au>Krätz, Lorenz</au><au>Holdt, Hans‐Jürgen</au><au>Bart, Hans‐Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling adsorption based on an isoreticular MOF‐series of IFPs—Part II: Dynamic adsorption in fixed beds</atitle><jtitle>Canadian journal of chemical engineering</jtitle><date>2022-08</date><risdate>2022</risdate><volume>100</volume><issue>8</issue><spage>1902</spage><epage>1919</epage><pages>1902-1919</pages><issn>0008-4034</issn><eissn>1939-019X</eissn><abstract>Based on experimental pure component data for the characterization of the isostructural imidazolate framework Potsdam (IFP) series reported in Part I, a model for the simulation of non‐isothermal dynamic adsorption of CO2/CH4‐mixtures in fixed‐bed columns is presented in this Part II. The robustness of the model is examined and validated, by comparison to experimental breakthrough data at different process conditions, such as varying concentration, temperature, and pressure. Thereby, different predictive methods for the estimation of adsorption equilibria of mixtures are compared (RAST, IAST, ML). The results show that ideal behaviour can be assumed with good accuracy for the system under consideration, except for IFP‐2, which shows significant deviations at increased pressures and temperatures. A detailed kinetic analysis reveals that mass transfer is significantly influenced by micropore diffusion. Thus, only for IFP‐1 the dynamic separation of CO2 and CH4 is equilibrium‐driven, while for the remaining IFPs the kinetic regime dominates the process, which in some cases increases the separation efficiency (IFP‐2 to ‐7) but can also inhibit it (IFP‐8). The determined intracrystalline diffusion coefficients show very good agreement with values for metal organic framework (MOF) compounds of similar structure reported in the literature.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/cjce.24288</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-4034
ispartof Canadian journal of chemical engineering, 2022-08, Vol.100 (8), p.1902-1919
issn 0008-4034
1939-019X
language eng
recordid cdi_proquest_journals_2684330023
source Wiley Online Library Journals Frontfile Complete
subjects Adsorption
adsorption kinetics
breakthrough experiments
Carbon dioxide
Columns (process)
dynamic adsorption
Fixed beds
IAST/RAST
Mass transfer
Metal-organic frameworks
Methane
Mixtures
multicomponent adsorption equilibria
Separation
title Modelling adsorption based on an isoreticular MOF‐series of IFPs—Part II: Dynamic adsorption in fixed beds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A16%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20adsorption%20based%20on%20an%20isoreticular%20MOF%E2%80%90series%20of%20IFPs%E2%80%94Part%20II:%20Dynamic%20adsorption%20in%20fixed%20beds&rft.jtitle=Canadian%20journal%20of%20chemical%20engineering&rft.au=Otter,%20Dirk&rft.date=2022-08&rft.volume=100&rft.issue=8&rft.spage=1902&rft.epage=1919&rft.pages=1902-1919&rft.issn=0008-4034&rft.eissn=1939-019X&rft_id=info:doi/10.1002/cjce.24288&rft_dat=%3Cproquest_cross%3E2684330023%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2684330023&rft_id=info:pmid/&rfr_iscdi=true