Simulating financial time series using attention

Financial time series simulation is a central topic since it extends the limited real data for training and evaluation of trading strategies. It is also challenging because of the complex statistical properties of the real financial data. We introduce two generative adversarial networks (GANs), whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-07
Hauptverfasser: Fu, Weilong, Hirsa, Ali, Osterrieder, Jörg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Fu, Weilong
Hirsa, Ali
Osterrieder, Jörg
description Financial time series simulation is a central topic since it extends the limited real data for training and evaluation of trading strategies. It is also challenging because of the complex statistical properties of the real financial data. We introduce two generative adversarial networks (GANs), which utilize the convolutional networks with attention and the transformers, for financial time series simulation. The GANs learn the statistical properties in a data-driven manner and the attention mechanism helps to replicate the long-range dependencies. The proposed GANs are tested on the S&P 500 index and option data, examined by scores based on the stylized facts and are compared with the pure convolutional GAN, i.e. QuantGAN. The attention-based GANs not only reproduce the stylized facts, but also smooth the autocorrelation of returns.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2684301948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2684301948</sourcerecordid><originalsourceid>FETCH-proquest_journals_26843019483</originalsourceid><addsrcrecordid>eNqNykEKwjAQQNEgCBbtHQKuC-kkrXEtinvdlyDTMiVNNJPcXwUP4Oov3l-JCrRuG2sANqJmnpVS0B-g63Ql1I2W4l2mMMmRggsPcl5mWlAyJkKWhb_mcsaQKYadWI_OM9a_bsX-cr6frs0zxVdBzsMcSwofGqC3Rqv2aKz-73oDpzszpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684301948</pqid></control><display><type>article</type><title>Simulating financial time series using attention</title><source>Freely Accessible Journals</source><creator>Fu, Weilong ; Hirsa, Ali ; Osterrieder, Jörg</creator><creatorcontrib>Fu, Weilong ; Hirsa, Ali ; Osterrieder, Jörg</creatorcontrib><description>Financial time series simulation is a central topic since it extends the limited real data for training and evaluation of trading strategies. It is also challenging because of the complex statistical properties of the real financial data. We introduce two generative adversarial networks (GANs), which utilize the convolutional networks with attention and the transformers, for financial time series simulation. The GANs learn the statistical properties in a data-driven manner and the attention mechanism helps to replicate the long-range dependencies. The proposed GANs are tested on the S&amp;P 500 index and option data, examined by scores based on the stylized facts and are compared with the pure convolutional GAN, i.e. QuantGAN. The attention-based GANs not only reproduce the stylized facts, but also smooth the autocorrelation of returns.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Generative adversarial networks ; Simulation ; Time series</subject><ispartof>arXiv.org, 2022-07</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Fu, Weilong</creatorcontrib><creatorcontrib>Hirsa, Ali</creatorcontrib><creatorcontrib>Osterrieder, Jörg</creatorcontrib><title>Simulating financial time series using attention</title><title>arXiv.org</title><description>Financial time series simulation is a central topic since it extends the limited real data for training and evaluation of trading strategies. It is also challenging because of the complex statistical properties of the real financial data. We introduce two generative adversarial networks (GANs), which utilize the convolutional networks with attention and the transformers, for financial time series simulation. The GANs learn the statistical properties in a data-driven manner and the attention mechanism helps to replicate the long-range dependencies. The proposed GANs are tested on the S&amp;P 500 index and option data, examined by scores based on the stylized facts and are compared with the pure convolutional GAN, i.e. QuantGAN. The attention-based GANs not only reproduce the stylized facts, but also smooth the autocorrelation of returns.</description><subject>Generative adversarial networks</subject><subject>Simulation</subject><subject>Time series</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNykEKwjAQQNEgCBbtHQKuC-kkrXEtinvdlyDTMiVNNJPcXwUP4Oov3l-JCrRuG2sANqJmnpVS0B-g63Ql1I2W4l2mMMmRggsPcl5mWlAyJkKWhb_mcsaQKYadWI_OM9a_bsX-cr6frs0zxVdBzsMcSwofGqC3Rqv2aKz-73oDpzszpw</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Fu, Weilong</creator><creator>Hirsa, Ali</creator><creator>Osterrieder, Jörg</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220701</creationdate><title>Simulating financial time series using attention</title><author>Fu, Weilong ; Hirsa, Ali ; Osterrieder, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26843019483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Generative adversarial networks</topic><topic>Simulation</topic><topic>Time series</topic><toplevel>online_resources</toplevel><creatorcontrib>Fu, Weilong</creatorcontrib><creatorcontrib>Hirsa, Ali</creatorcontrib><creatorcontrib>Osterrieder, Jörg</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Weilong</au><au>Hirsa, Ali</au><au>Osterrieder, Jörg</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Simulating financial time series using attention</atitle><jtitle>arXiv.org</jtitle><date>2022-07-01</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Financial time series simulation is a central topic since it extends the limited real data for training and evaluation of trading strategies. It is also challenging because of the complex statistical properties of the real financial data. We introduce two generative adversarial networks (GANs), which utilize the convolutional networks with attention and the transformers, for financial time series simulation. The GANs learn the statistical properties in a data-driven manner and the attention mechanism helps to replicate the long-range dependencies. The proposed GANs are tested on the S&amp;P 500 index and option data, examined by scores based on the stylized facts and are compared with the pure convolutional GAN, i.e. QuantGAN. The attention-based GANs not only reproduce the stylized facts, but also smooth the autocorrelation of returns.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2684301948
source Freely Accessible Journals
subjects Generative adversarial networks
Simulation
Time series
title Simulating financial time series using attention
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A38%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Simulating%20financial%20time%20series%20using%20attention&rft.jtitle=arXiv.org&rft.au=Fu,%20Weilong&rft.date=2022-07-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2684301948%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2684301948&rft_id=info:pmid/&rfr_iscdi=true