MultiEarth 2022 -- The Champion Solution for Image-to-Image Translation Challenge via Generation Models

The MultiEarth 2022 Image-to-Image Translation challenge provides a well-constrained test bed for generating the corresponding RGB Sentinel-2 imagery with the given Sentinel-1 VV & VH imagery. In this challenge, we designed various generation models and found the SPADE [1] and pix2pixHD [2] mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-06
Hauptverfasser: Gou, Yuchuan, Peng, Bo, Liu, Hongchen, Zhou, Hang, Jui-Hsin Lai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gou, Yuchuan
Peng, Bo
Liu, Hongchen
Zhou, Hang
Jui-Hsin Lai
description The MultiEarth 2022 Image-to-Image Translation challenge provides a well-constrained test bed for generating the corresponding RGB Sentinel-2 imagery with the given Sentinel-1 VV & VH imagery. In this challenge, we designed various generation models and found the SPADE [1] and pix2pixHD [2] models could perform our best results. In our self-evaluation, the SPADE-2 model with L1-loss can achieve 0.02194 MAE score and 31.092 PSNR dB. In our final submission, the best model can achieve 0.02795 MAE score ranked No.1 on the leader board.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2684299159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2684299159</sourcerecordid><originalsourceid>FETCH-proquest_journals_26842991593</originalsourceid><addsrcrecordid>eNqNjskKwjAYhIMgWLTvEPAcSP_Yas-lLoee7L0ETDfSpGbx-Y3VB_A0w3wzMCsUAWMJOR0ANii2dqSUQnaENGUR6iov3VBy43oMFAATgute4KLn0zxohe9aevcxrTb4NvFOEKfJYnBtuLKSLzgMpBQqpK-B44tQwnxBpR9C2h1at1xaEf90i_bnsi6uZDb66YV1zai9UQE1kIWreZ6kOfuv9Qa74kWy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684299159</pqid></control><display><type>article</type><title>MultiEarth 2022 -- The Champion Solution for Image-to-Image Translation Challenge via Generation Models</title><source>Free E- Journals</source><creator>Gou, Yuchuan ; Peng, Bo ; Liu, Hongchen ; Zhou, Hang ; Jui-Hsin Lai</creator><creatorcontrib>Gou, Yuchuan ; Peng, Bo ; Liu, Hongchen ; Zhou, Hang ; Jui-Hsin Lai</creatorcontrib><description>The MultiEarth 2022 Image-to-Image Translation challenge provides a well-constrained test bed for generating the corresponding RGB Sentinel-2 imagery with the given Sentinel-1 VV &amp; VH imagery. In this challenge, we designed various generation models and found the SPADE [1] and pix2pixHD [2] models could perform our best results. In our self-evaluation, the SPADE-2 model with L1-loss can achieve 0.02194 MAE score and 31.092 PSNR dB. In our final submission, the best model can achieve 0.02795 MAE score ranked No.1 on the leader board.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Imagery</subject><ispartof>arXiv.org, 2022-06</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Gou, Yuchuan</creatorcontrib><creatorcontrib>Peng, Bo</creatorcontrib><creatorcontrib>Liu, Hongchen</creatorcontrib><creatorcontrib>Zhou, Hang</creatorcontrib><creatorcontrib>Jui-Hsin Lai</creatorcontrib><title>MultiEarth 2022 -- The Champion Solution for Image-to-Image Translation Challenge via Generation Models</title><title>arXiv.org</title><description>The MultiEarth 2022 Image-to-Image Translation challenge provides a well-constrained test bed for generating the corresponding RGB Sentinel-2 imagery with the given Sentinel-1 VV &amp; VH imagery. In this challenge, we designed various generation models and found the SPADE [1] and pix2pixHD [2] models could perform our best results. In our self-evaluation, the SPADE-2 model with L1-loss can achieve 0.02194 MAE score and 31.092 PSNR dB. In our final submission, the best model can achieve 0.02795 MAE score ranked No.1 on the leader board.</description><subject>Imagery</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjskKwjAYhIMgWLTvEPAcSP_Yas-lLoee7L0ETDfSpGbx-Y3VB_A0w3wzMCsUAWMJOR0ANii2dqSUQnaENGUR6iov3VBy43oMFAATgute4KLn0zxohe9aevcxrTb4NvFOEKfJYnBtuLKSLzgMpBQqpK-B44tQwnxBpR9C2h1at1xaEf90i_bnsi6uZDb66YV1zai9UQE1kIWreZ6kOfuv9Qa74kWy</recordid><startdate>20220617</startdate><enddate>20220617</enddate><creator>Gou, Yuchuan</creator><creator>Peng, Bo</creator><creator>Liu, Hongchen</creator><creator>Zhou, Hang</creator><creator>Jui-Hsin Lai</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220617</creationdate><title>MultiEarth 2022 -- The Champion Solution for Image-to-Image Translation Challenge via Generation Models</title><author>Gou, Yuchuan ; Peng, Bo ; Liu, Hongchen ; Zhou, Hang ; Jui-Hsin Lai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26842991593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Imagery</topic><toplevel>online_resources</toplevel><creatorcontrib>Gou, Yuchuan</creatorcontrib><creatorcontrib>Peng, Bo</creatorcontrib><creatorcontrib>Liu, Hongchen</creatorcontrib><creatorcontrib>Zhou, Hang</creatorcontrib><creatorcontrib>Jui-Hsin Lai</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gou, Yuchuan</au><au>Peng, Bo</au><au>Liu, Hongchen</au><au>Zhou, Hang</au><au>Jui-Hsin Lai</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>MultiEarth 2022 -- The Champion Solution for Image-to-Image Translation Challenge via Generation Models</atitle><jtitle>arXiv.org</jtitle><date>2022-06-17</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>The MultiEarth 2022 Image-to-Image Translation challenge provides a well-constrained test bed for generating the corresponding RGB Sentinel-2 imagery with the given Sentinel-1 VV &amp; VH imagery. In this challenge, we designed various generation models and found the SPADE [1] and pix2pixHD [2] models could perform our best results. In our self-evaluation, the SPADE-2 model with L1-loss can achieve 0.02194 MAE score and 31.092 PSNR dB. In our final submission, the best model can achieve 0.02795 MAE score ranked No.1 on the leader board.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2684299159
source Free E- Journals
subjects Imagery
title MultiEarth 2022 -- The Champion Solution for Image-to-Image Translation Challenge via Generation Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A26%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=MultiEarth%202022%20--%20The%20Champion%20Solution%20for%20Image-to-Image%20Translation%20Challenge%20via%20Generation%20Models&rft.jtitle=arXiv.org&rft.au=Gou,%20Yuchuan&rft.date=2022-06-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2684299159%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2684299159&rft_id=info:pmid/&rfr_iscdi=true