Flow Patterns of Self-Sustained Oscillations in Fluidic Diverters

A fluidic oscillator is a device capable of transforming a steady input flow into an oscillatory output using solely fluid dynamic principles and without requiring any moving components. Although the basic operation principles of fluidic oscillator are known to some extent, the unsteady and turbulen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIAA journal 2022-07, Vol.60 (7), p.4207-4214
Hauptverfasser: Fromm, Matthias, Kim, Jeonglae, Seifert, Avraham, Kriegseis, Jochen, Grundmann, Sven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4214
container_issue 7
container_start_page 4207
container_title AIAA journal
container_volume 60
creator Fromm, Matthias
Kim, Jeonglae
Seifert, Avraham
Kriegseis, Jochen
Grundmann, Sven
description A fluidic oscillator is a device capable of transforming a steady input flow into an oscillatory output using solely fluid dynamic principles and without requiring any moving components. Although the basic operation principles of fluidic oscillator are known to some extent, the unsteady and turbulent nature of its internal flow remains difficult to understand. The current study aims to further clarify the complicated flow physics involved in fluidic oscillators by investigating a device based on the fluid diverter principle. Spatiotemporally resolved velocity and pressure data obtained from a large-eddy simulation of the internal flow are decomposed into the proper orthogonal modes. The finite-time Lyapunov exponents are computed on the flowfield reconstructed using the proper orthogonal modes to perform a Lagrangian analysis of the switching mechanism. It is found that four dominant modes are sufficient to describe the jet switching. Strong coherent structures are found to separate the flow going through the oscillator from secondary flows through the feedback tube. The deflection of the jet inside the device is found to depend only on the pressure difference across the control ports, whereas the change of this pressure difference is mediated by the flows in the feedback tube.
doi_str_mv 10.2514/1.J061280
format Article
fullrecord <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_proquest_journals_2684209411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2684209411</sourcerecordid><originalsourceid>FETCH-LOGICAL-a288t-ce824e643423df0f24ed003825a5bae29457231101eb7570eb50a25f44e702093</originalsourceid><addsrcrecordid>eNplkE9LAzEQxYMoWKsHv8GCIHjYOjNJuumx1NY_FCpUwVtIdxNIWXdrsqv47Y204MHT4_F-8wYeY5cII5IobnH0BGMkBUdsgJLznCv5dswGAIA5Ckmn7CzGbXJUKByw6aJuv7Jn03U2NDFrXba2tcvXfeyMb2yVrWLp69p0vk2xb7JF3fvKl9md_7QhHcVzduJMHe3FQYfsdTF_mT3ky9X942y6zA0p1eWlVSTsWHBBvHLgkqkAuCJp5MZYmghZEEcEtJtCFmA3EgxJJ4QtgGDCh-xq37sL7UdvY6e3bR-a9FLTWImECMRE3eypMrQxBuv0Lvh3E741gv5dSKM-LJTY6z1rvDF_bf_BH9t0Yac</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684209411</pqid></control><display><type>article</type><title>Flow Patterns of Self-Sustained Oscillations in Fluidic Diverters</title><source>Alma/SFX Local Collection</source><creator>Fromm, Matthias ; Kim, Jeonglae ; Seifert, Avraham ; Kriegseis, Jochen ; Grundmann, Sven</creator><creatorcontrib>Fromm, Matthias ; Kim, Jeonglae ; Seifert, Avraham ; Kriegseis, Jochen ; Grundmann, Sven</creatorcontrib><description>A fluidic oscillator is a device capable of transforming a steady input flow into an oscillatory output using solely fluid dynamic principles and without requiring any moving components. Although the basic operation principles of fluidic oscillator are known to some extent, the unsteady and turbulent nature of its internal flow remains difficult to understand. The current study aims to further clarify the complicated flow physics involved in fluidic oscillators by investigating a device based on the fluid diverter principle. Spatiotemporally resolved velocity and pressure data obtained from a large-eddy simulation of the internal flow are decomposed into the proper orthogonal modes. The finite-time Lyapunov exponents are computed on the flowfield reconstructed using the proper orthogonal modes to perform a Lagrangian analysis of the switching mechanism. It is found that four dominant modes are sufficient to describe the jet switching. Strong coherent structures are found to separate the flow going through the oscillator from secondary flows through the feedback tube. The deflection of the jet inside the device is found to depend only on the pressure difference across the control ports, whereas the change of this pressure difference is mediated by the flows in the feedback tube.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J061280</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Datasets ; Decomposition ; Diverters ; Feedback ; Flow control ; Flow distribution ; Fluid dynamics ; Fluid flow ; Internal flow ; Large eddy simulation ; Liapunov exponents ; Oscillators ; Principles ; Secondary flow ; Simulation ; Switching ; Velocity</subject><ispartof>AIAA journal, 2022-07, Vol.60 (7), p.4207-4214</ispartof><rights>Copyright © 2022 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2022 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a288t-ce824e643423df0f24ed003825a5bae29457231101eb7570eb50a25f44e702093</citedby><cites>FETCH-LOGICAL-a288t-ce824e643423df0f24ed003825a5bae29457231101eb7570eb50a25f44e702093</cites><orcidid>0000-0002-9757-2800 ; 0000-0001-8489-4547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Fromm, Matthias</creatorcontrib><creatorcontrib>Kim, Jeonglae</creatorcontrib><creatorcontrib>Seifert, Avraham</creatorcontrib><creatorcontrib>Kriegseis, Jochen</creatorcontrib><creatorcontrib>Grundmann, Sven</creatorcontrib><title>Flow Patterns of Self-Sustained Oscillations in Fluidic Diverters</title><title>AIAA journal</title><description>A fluidic oscillator is a device capable of transforming a steady input flow into an oscillatory output using solely fluid dynamic principles and without requiring any moving components. Although the basic operation principles of fluidic oscillator are known to some extent, the unsteady and turbulent nature of its internal flow remains difficult to understand. The current study aims to further clarify the complicated flow physics involved in fluidic oscillators by investigating a device based on the fluid diverter principle. Spatiotemporally resolved velocity and pressure data obtained from a large-eddy simulation of the internal flow are decomposed into the proper orthogonal modes. The finite-time Lyapunov exponents are computed on the flowfield reconstructed using the proper orthogonal modes to perform a Lagrangian analysis of the switching mechanism. It is found that four dominant modes are sufficient to describe the jet switching. Strong coherent structures are found to separate the flow going through the oscillator from secondary flows through the feedback tube. The deflection of the jet inside the device is found to depend only on the pressure difference across the control ports, whereas the change of this pressure difference is mediated by the flows in the feedback tube.</description><subject>Datasets</subject><subject>Decomposition</subject><subject>Diverters</subject><subject>Feedback</subject><subject>Flow control</subject><subject>Flow distribution</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Internal flow</subject><subject>Large eddy simulation</subject><subject>Liapunov exponents</subject><subject>Oscillators</subject><subject>Principles</subject><subject>Secondary flow</subject><subject>Simulation</subject><subject>Switching</subject><subject>Velocity</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNplkE9LAzEQxYMoWKsHv8GCIHjYOjNJuumx1NY_FCpUwVtIdxNIWXdrsqv47Y204MHT4_F-8wYeY5cII5IobnH0BGMkBUdsgJLznCv5dswGAIA5Ckmn7CzGbXJUKByw6aJuv7Jn03U2NDFrXba2tcvXfeyMb2yVrWLp69p0vk2xb7JF3fvKl9md_7QhHcVzduJMHe3FQYfsdTF_mT3ky9X942y6zA0p1eWlVSTsWHBBvHLgkqkAuCJp5MZYmghZEEcEtJtCFmA3EgxJJ4QtgGDCh-xq37sL7UdvY6e3bR-a9FLTWImECMRE3eypMrQxBuv0Lvh3E741gv5dSKM-LJTY6z1rvDF_bf_BH9t0Yac</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Fromm, Matthias</creator><creator>Kim, Jeonglae</creator><creator>Seifert, Avraham</creator><creator>Kriegseis, Jochen</creator><creator>Grundmann, Sven</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9757-2800</orcidid><orcidid>https://orcid.org/0000-0001-8489-4547</orcidid></search><sort><creationdate>20220701</creationdate><title>Flow Patterns of Self-Sustained Oscillations in Fluidic Diverters</title><author>Fromm, Matthias ; Kim, Jeonglae ; Seifert, Avraham ; Kriegseis, Jochen ; Grundmann, Sven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a288t-ce824e643423df0f24ed003825a5bae29457231101eb7570eb50a25f44e702093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Datasets</topic><topic>Decomposition</topic><topic>Diverters</topic><topic>Feedback</topic><topic>Flow control</topic><topic>Flow distribution</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Internal flow</topic><topic>Large eddy simulation</topic><topic>Liapunov exponents</topic><topic>Oscillators</topic><topic>Principles</topic><topic>Secondary flow</topic><topic>Simulation</topic><topic>Switching</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fromm, Matthias</creatorcontrib><creatorcontrib>Kim, Jeonglae</creatorcontrib><creatorcontrib>Seifert, Avraham</creatorcontrib><creatorcontrib>Kriegseis, Jochen</creatorcontrib><creatorcontrib>Grundmann, Sven</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fromm, Matthias</au><au>Kim, Jeonglae</au><au>Seifert, Avraham</au><au>Kriegseis, Jochen</au><au>Grundmann, Sven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow Patterns of Self-Sustained Oscillations in Fluidic Diverters</atitle><jtitle>AIAA journal</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>60</volume><issue>7</issue><spage>4207</spage><epage>4214</epage><pages>4207-4214</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>A fluidic oscillator is a device capable of transforming a steady input flow into an oscillatory output using solely fluid dynamic principles and without requiring any moving components. Although the basic operation principles of fluidic oscillator are known to some extent, the unsteady and turbulent nature of its internal flow remains difficult to understand. The current study aims to further clarify the complicated flow physics involved in fluidic oscillators by investigating a device based on the fluid diverter principle. Spatiotemporally resolved velocity and pressure data obtained from a large-eddy simulation of the internal flow are decomposed into the proper orthogonal modes. The finite-time Lyapunov exponents are computed on the flowfield reconstructed using the proper orthogonal modes to perform a Lagrangian analysis of the switching mechanism. It is found that four dominant modes are sufficient to describe the jet switching. Strong coherent structures are found to separate the flow going through the oscillator from secondary flows through the feedback tube. The deflection of the jet inside the device is found to depend only on the pressure difference across the control ports, whereas the change of this pressure difference is mediated by the flows in the feedback tube.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J061280</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9757-2800</orcidid><orcidid>https://orcid.org/0000-0001-8489-4547</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2022-07, Vol.60 (7), p.4207-4214
issn 0001-1452
1533-385X
language eng
recordid cdi_proquest_journals_2684209411
source Alma/SFX Local Collection
subjects Datasets
Decomposition
Diverters
Feedback
Flow control
Flow distribution
Fluid dynamics
Fluid flow
Internal flow
Large eddy simulation
Liapunov exponents
Oscillators
Principles
Secondary flow
Simulation
Switching
Velocity
title Flow Patterns of Self-Sustained Oscillations in Fluidic Diverters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T04%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20Patterns%20of%20Self-Sustained%20Oscillations%20in%20Fluidic%20Diverters&rft.jtitle=AIAA%20journal&rft.au=Fromm,%20Matthias&rft.date=2022-07-01&rft.volume=60&rft.issue=7&rft.spage=4207&rft.epage=4214&rft.pages=4207-4214&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J061280&rft_dat=%3Cproquest_aiaa_%3E2684209411%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2684209411&rft_id=info:pmid/&rfr_iscdi=true