Flow Patterns of Self-Sustained Oscillations in Fluidic Diverters
A fluidic oscillator is a device capable of transforming a steady input flow into an oscillatory output using solely fluid dynamic principles and without requiring any moving components. Although the basic operation principles of fluidic oscillator are known to some extent, the unsteady and turbulen...
Gespeichert in:
Veröffentlicht in: | AIAA journal 2022-07, Vol.60 (7), p.4207-4214 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4214 |
---|---|
container_issue | 7 |
container_start_page | 4207 |
container_title | AIAA journal |
container_volume | 60 |
creator | Fromm, Matthias Kim, Jeonglae Seifert, Avraham Kriegseis, Jochen Grundmann, Sven |
description | A fluidic oscillator is a device capable of transforming a steady input flow into an oscillatory output using solely fluid dynamic principles and without requiring any moving components. Although the basic operation principles of fluidic oscillator are known to some extent, the unsteady and turbulent nature of its internal flow remains difficult to understand. The current study aims to further clarify the complicated flow physics involved in fluidic oscillators by investigating a device based on the fluid diverter principle. Spatiotemporally resolved velocity and pressure data obtained from a large-eddy simulation of the internal flow are decomposed into the proper orthogonal modes. The finite-time Lyapunov exponents are computed on the flowfield reconstructed using the proper orthogonal modes to perform a Lagrangian analysis of the switching mechanism. It is found that four dominant modes are sufficient to describe the jet switching. Strong coherent structures are found to separate the flow going through the oscillator from secondary flows through the feedback tube. The deflection of the jet inside the device is found to depend only on the pressure difference across the control ports, whereas the change of this pressure difference is mediated by the flows in the feedback tube. |
doi_str_mv | 10.2514/1.J061280 |
format | Article |
fullrecord | <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_proquest_journals_2684209411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2684209411</sourcerecordid><originalsourceid>FETCH-LOGICAL-a288t-ce824e643423df0f24ed003825a5bae29457231101eb7570eb50a25f44e702093</originalsourceid><addsrcrecordid>eNplkE9LAzEQxYMoWKsHv8GCIHjYOjNJuumx1NY_FCpUwVtIdxNIWXdrsqv47Y204MHT4_F-8wYeY5cII5IobnH0BGMkBUdsgJLznCv5dswGAIA5Ckmn7CzGbXJUKByw6aJuv7Jn03U2NDFrXba2tcvXfeyMb2yVrWLp69p0vk2xb7JF3fvKl9md_7QhHcVzduJMHe3FQYfsdTF_mT3ky9X942y6zA0p1eWlVSTsWHBBvHLgkqkAuCJp5MZYmghZEEcEtJtCFmA3EgxJJ4QtgGDCh-xq37sL7UdvY6e3bR-a9FLTWImECMRE3eypMrQxBuv0Lvh3E741gv5dSKM-LJTY6z1rvDF_bf_BH9t0Yac</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684209411</pqid></control><display><type>article</type><title>Flow Patterns of Self-Sustained Oscillations in Fluidic Diverters</title><source>Alma/SFX Local Collection</source><creator>Fromm, Matthias ; Kim, Jeonglae ; Seifert, Avraham ; Kriegseis, Jochen ; Grundmann, Sven</creator><creatorcontrib>Fromm, Matthias ; Kim, Jeonglae ; Seifert, Avraham ; Kriegseis, Jochen ; Grundmann, Sven</creatorcontrib><description>A fluidic oscillator is a device capable of transforming a steady input flow into an oscillatory output using solely fluid dynamic principles and without requiring any moving components. Although the basic operation principles of fluidic oscillator are known to some extent, the unsteady and turbulent nature of its internal flow remains difficult to understand. The current study aims to further clarify the complicated flow physics involved in fluidic oscillators by investigating a device based on the fluid diverter principle. Spatiotemporally resolved velocity and pressure data obtained from a large-eddy simulation of the internal flow are decomposed into the proper orthogonal modes. The finite-time Lyapunov exponents are computed on the flowfield reconstructed using the proper orthogonal modes to perform a Lagrangian analysis of the switching mechanism. It is found that four dominant modes are sufficient to describe the jet switching. Strong coherent structures are found to separate the flow going through the oscillator from secondary flows through the feedback tube. The deflection of the jet inside the device is found to depend only on the pressure difference across the control ports, whereas the change of this pressure difference is mediated by the flows in the feedback tube.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J061280</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Datasets ; Decomposition ; Diverters ; Feedback ; Flow control ; Flow distribution ; Fluid dynamics ; Fluid flow ; Internal flow ; Large eddy simulation ; Liapunov exponents ; Oscillators ; Principles ; Secondary flow ; Simulation ; Switching ; Velocity</subject><ispartof>AIAA journal, 2022-07, Vol.60 (7), p.4207-4214</ispartof><rights>Copyright © 2022 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2022 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a288t-ce824e643423df0f24ed003825a5bae29457231101eb7570eb50a25f44e702093</citedby><cites>FETCH-LOGICAL-a288t-ce824e643423df0f24ed003825a5bae29457231101eb7570eb50a25f44e702093</cites><orcidid>0000-0002-9757-2800 ; 0000-0001-8489-4547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Fromm, Matthias</creatorcontrib><creatorcontrib>Kim, Jeonglae</creatorcontrib><creatorcontrib>Seifert, Avraham</creatorcontrib><creatorcontrib>Kriegseis, Jochen</creatorcontrib><creatorcontrib>Grundmann, Sven</creatorcontrib><title>Flow Patterns of Self-Sustained Oscillations in Fluidic Diverters</title><title>AIAA journal</title><description>A fluidic oscillator is a device capable of transforming a steady input flow into an oscillatory output using solely fluid dynamic principles and without requiring any moving components. Although the basic operation principles of fluidic oscillator are known to some extent, the unsteady and turbulent nature of its internal flow remains difficult to understand. The current study aims to further clarify the complicated flow physics involved in fluidic oscillators by investigating a device based on the fluid diverter principle. Spatiotemporally resolved velocity and pressure data obtained from a large-eddy simulation of the internal flow are decomposed into the proper orthogonal modes. The finite-time Lyapunov exponents are computed on the flowfield reconstructed using the proper orthogonal modes to perform a Lagrangian analysis of the switching mechanism. It is found that four dominant modes are sufficient to describe the jet switching. Strong coherent structures are found to separate the flow going through the oscillator from secondary flows through the feedback tube. The deflection of the jet inside the device is found to depend only on the pressure difference across the control ports, whereas the change of this pressure difference is mediated by the flows in the feedback tube.</description><subject>Datasets</subject><subject>Decomposition</subject><subject>Diverters</subject><subject>Feedback</subject><subject>Flow control</subject><subject>Flow distribution</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Internal flow</subject><subject>Large eddy simulation</subject><subject>Liapunov exponents</subject><subject>Oscillators</subject><subject>Principles</subject><subject>Secondary flow</subject><subject>Simulation</subject><subject>Switching</subject><subject>Velocity</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNplkE9LAzEQxYMoWKsHv8GCIHjYOjNJuumx1NY_FCpUwVtIdxNIWXdrsqv47Y204MHT4_F-8wYeY5cII5IobnH0BGMkBUdsgJLznCv5dswGAIA5Ckmn7CzGbXJUKByw6aJuv7Jn03U2NDFrXba2tcvXfeyMb2yVrWLp69p0vk2xb7JF3fvKl9md_7QhHcVzduJMHe3FQYfsdTF_mT3ky9X942y6zA0p1eWlVSTsWHBBvHLgkqkAuCJp5MZYmghZEEcEtJtCFmA3EgxJJ4QtgGDCh-xq37sL7UdvY6e3bR-a9FLTWImECMRE3eypMrQxBuv0Lvh3E741gv5dSKM-LJTY6z1rvDF_bf_BH9t0Yac</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Fromm, Matthias</creator><creator>Kim, Jeonglae</creator><creator>Seifert, Avraham</creator><creator>Kriegseis, Jochen</creator><creator>Grundmann, Sven</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9757-2800</orcidid><orcidid>https://orcid.org/0000-0001-8489-4547</orcidid></search><sort><creationdate>20220701</creationdate><title>Flow Patterns of Self-Sustained Oscillations in Fluidic Diverters</title><author>Fromm, Matthias ; Kim, Jeonglae ; Seifert, Avraham ; Kriegseis, Jochen ; Grundmann, Sven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a288t-ce824e643423df0f24ed003825a5bae29457231101eb7570eb50a25f44e702093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Datasets</topic><topic>Decomposition</topic><topic>Diverters</topic><topic>Feedback</topic><topic>Flow control</topic><topic>Flow distribution</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Internal flow</topic><topic>Large eddy simulation</topic><topic>Liapunov exponents</topic><topic>Oscillators</topic><topic>Principles</topic><topic>Secondary flow</topic><topic>Simulation</topic><topic>Switching</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fromm, Matthias</creatorcontrib><creatorcontrib>Kim, Jeonglae</creatorcontrib><creatorcontrib>Seifert, Avraham</creatorcontrib><creatorcontrib>Kriegseis, Jochen</creatorcontrib><creatorcontrib>Grundmann, Sven</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fromm, Matthias</au><au>Kim, Jeonglae</au><au>Seifert, Avraham</au><au>Kriegseis, Jochen</au><au>Grundmann, Sven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow Patterns of Self-Sustained Oscillations in Fluidic Diverters</atitle><jtitle>AIAA journal</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>60</volume><issue>7</issue><spage>4207</spage><epage>4214</epage><pages>4207-4214</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>A fluidic oscillator is a device capable of transforming a steady input flow into an oscillatory output using solely fluid dynamic principles and without requiring any moving components. Although the basic operation principles of fluidic oscillator are known to some extent, the unsteady and turbulent nature of its internal flow remains difficult to understand. The current study aims to further clarify the complicated flow physics involved in fluidic oscillators by investigating a device based on the fluid diverter principle. Spatiotemporally resolved velocity and pressure data obtained from a large-eddy simulation of the internal flow are decomposed into the proper orthogonal modes. The finite-time Lyapunov exponents are computed on the flowfield reconstructed using the proper orthogonal modes to perform a Lagrangian analysis of the switching mechanism. It is found that four dominant modes are sufficient to describe the jet switching. Strong coherent structures are found to separate the flow going through the oscillator from secondary flows through the feedback tube. The deflection of the jet inside the device is found to depend only on the pressure difference across the control ports, whereas the change of this pressure difference is mediated by the flows in the feedback tube.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J061280</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9757-2800</orcidid><orcidid>https://orcid.org/0000-0001-8489-4547</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1452 |
ispartof | AIAA journal, 2022-07, Vol.60 (7), p.4207-4214 |
issn | 0001-1452 1533-385X |
language | eng |
recordid | cdi_proquest_journals_2684209411 |
source | Alma/SFX Local Collection |
subjects | Datasets Decomposition Diverters Feedback Flow control Flow distribution Fluid dynamics Fluid flow Internal flow Large eddy simulation Liapunov exponents Oscillators Principles Secondary flow Simulation Switching Velocity |
title | Flow Patterns of Self-Sustained Oscillations in Fluidic Diverters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T04%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20Patterns%20of%20Self-Sustained%20Oscillations%20in%20Fluidic%20Diverters&rft.jtitle=AIAA%20journal&rft.au=Fromm,%20Matthias&rft.date=2022-07-01&rft.volume=60&rft.issue=7&rft.spage=4207&rft.epage=4214&rft.pages=4207-4214&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J061280&rft_dat=%3Cproquest_aiaa_%3E2684209411%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2684209411&rft_id=info:pmid/&rfr_iscdi=true |