Transition Prediction of Boundary Layers in the Presence of Backward-Facing Steps

A set of available engineering models for the prediction of transition to turbulence is evaluated via comparisons with a high-quality experiment involving a backward-facing step (BFS) on a flat plate at subsonic freestream conditions. The streamwise shift in the transition location is monitored as t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIAA journal 2022-07, Vol.60 (7), p.4149-4161
Hauptverfasser: Hildebrand, Nathaniel, Mysore, Preethi V., Choudhari, Meelan M., Venkatachari, Balaji S., Paredes, Pedro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4161
container_issue 7
container_start_page 4149
container_title AIAA journal
container_volume 60
creator Hildebrand, Nathaniel
Mysore, Preethi V.
Choudhari, Meelan M.
Venkatachari, Balaji S.
Paredes, Pedro
description A set of available engineering models for the prediction of transition to turbulence is evaluated via comparisons with a high-quality experiment involving a backward-facing step (BFS) on a flat plate at subsonic freestream conditions. The streamwise shift in the transition location is monitored as the step height and flow speed are varied across step-height-to-local-displacement-thickness ratios of 0
doi_str_mv 10.2514/1.J061296
format Article
fullrecord <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_proquest_journals_2684209406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2684209406</sourcerecordid><originalsourceid>FETCH-LOGICAL-a218t-a5dc4a0ce465364f0ccb3481a93ed7e9b22439d2d8df51904c5ad3e4ce488c453</originalsourceid><addsrcrecordid>eNpl0EtLAzEQAOAgCtbqwX-wIAgetmby2GaPWlofFFSs4C1Mk6ymarYmu0j_vdsHePA0M_DNDDOEnAIdMAniEgb3tABWFnukB5LznCv5uk96lFLIQUh2SI5SWnQVGyrokadZxJB84-uQPUZnvdmkdZVd122wGFfZFFcupsyHrHl3a5RcMG5D0Hz8YLT5BI0Pb9lz45bpmBxU-JncyS72yctkPBvd5tOHm7vR1TRHBqrJUVojkBonCskLUVFj5lwowJI7O3TlnDHBS8usspWEkgoj0XInugaljJC8T862c5ex_m5davSibmPoVmpWKMFoKWjRqYutMrFOKbpKL6P_6s7SQPX6Yxr07mOdPd9a9Ih_0_7DXxauaLo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684209406</pqid></control><display><type>article</type><title>Transition Prediction of Boundary Layers in the Presence of Backward-Facing Steps</title><source>Alma/SFX Local Collection</source><creator>Hildebrand, Nathaniel ; Mysore, Preethi V. ; Choudhari, Meelan M. ; Venkatachari, Balaji S. ; Paredes, Pedro</creator><creatorcontrib>Hildebrand, Nathaniel ; Mysore, Preethi V. ; Choudhari, Meelan M. ; Venkatachari, Balaji S. ; Paredes, Pedro</creatorcontrib><description>A set of available engineering models for the prediction of transition to turbulence is evaluated via comparisons with a high-quality experiment involving a backward-facing step (BFS) on a flat plate at subsonic freestream conditions. The streamwise shift in the transition location is monitored as the step height and flow speed are varied across step-height-to-local-displacement-thickness ratios of 0&lt;h/δ*&lt;1.6. We apply the N-factor method based on the linear amplification of boundary-layer instabilities to laminar two-dimensional basic states. N-factor correlations that rely on quasi-parallel linear stability theory (LST), the parabolized stability equations, and the harmonic linearized Navier–Stokes equations (HLNSE) yield good agreement with the experimental data, except if the onset of transition occurs slightly downstream of the BFS. For LST, the neglect of nonparallel flow effects results in transition locations that are further upstream compared to HLNSE. In contrast, models that use auxiliary transport equations and transition correlations based on local parameters fail to capture the physics associated with a BFS for moderate step heights. Specifically, the results obtained with the γ−Reθt model indicate that it is unable to account for the flow history effects. Results show the amplification-factor-transport model also fails to capture the BFS effects in spite of accounting for the basic-state distortion near the step.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J061296</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Aircraft ; Amplification ; Aviation ; Backward facing steps ; Boundary layer transition ; Dimensional analysis ; Downstream effects ; Energy efficiency ; Flat plates ; Methods ; Parabolized stability equations ; Physics ; Pressure distribution ; Reynolds number ; Stability ; Transport equations ; Viscosity</subject><ispartof>AIAA journal, 2022-07, Vol.60 (7), p.4149-4161</ispartof><rights>This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a218t-a5dc4a0ce465364f0ccb3481a93ed7e9b22439d2d8df51904c5ad3e4ce488c453</citedby><cites>FETCH-LOGICAL-a218t-a5dc4a0ce465364f0ccb3481a93ed7e9b22439d2d8df51904c5ad3e4ce488c453</cites><orcidid>0000-0003-1890-1811</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Hildebrand, Nathaniel</creatorcontrib><creatorcontrib>Mysore, Preethi V.</creatorcontrib><creatorcontrib>Choudhari, Meelan M.</creatorcontrib><creatorcontrib>Venkatachari, Balaji S.</creatorcontrib><creatorcontrib>Paredes, Pedro</creatorcontrib><title>Transition Prediction of Boundary Layers in the Presence of Backward-Facing Steps</title><title>AIAA journal</title><description>A set of available engineering models for the prediction of transition to turbulence is evaluated via comparisons with a high-quality experiment involving a backward-facing step (BFS) on a flat plate at subsonic freestream conditions. The streamwise shift in the transition location is monitored as the step height and flow speed are varied across step-height-to-local-displacement-thickness ratios of 0&lt;h/δ*&lt;1.6. We apply the N-factor method based on the linear amplification of boundary-layer instabilities to laminar two-dimensional basic states. N-factor correlations that rely on quasi-parallel linear stability theory (LST), the parabolized stability equations, and the harmonic linearized Navier–Stokes equations (HLNSE) yield good agreement with the experimental data, except if the onset of transition occurs slightly downstream of the BFS. For LST, the neglect of nonparallel flow effects results in transition locations that are further upstream compared to HLNSE. In contrast, models that use auxiliary transport equations and transition correlations based on local parameters fail to capture the physics associated with a BFS for moderate step heights. Specifically, the results obtained with the γ−Reθt model indicate that it is unable to account for the flow history effects. Results show the amplification-factor-transport model also fails to capture the BFS effects in spite of accounting for the basic-state distortion near the step.</description><subject>Aircraft</subject><subject>Amplification</subject><subject>Aviation</subject><subject>Backward facing steps</subject><subject>Boundary layer transition</subject><subject>Dimensional analysis</subject><subject>Downstream effects</subject><subject>Energy efficiency</subject><subject>Flat plates</subject><subject>Methods</subject><subject>Parabolized stability equations</subject><subject>Physics</subject><subject>Pressure distribution</subject><subject>Reynolds number</subject><subject>Stability</subject><subject>Transport equations</subject><subject>Viscosity</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpl0EtLAzEQAOAgCtbqwX-wIAgetmby2GaPWlofFFSs4C1Mk6ymarYmu0j_vdsHePA0M_DNDDOEnAIdMAniEgb3tABWFnukB5LznCv5uk96lFLIQUh2SI5SWnQVGyrokadZxJB84-uQPUZnvdmkdZVd122wGFfZFFcupsyHrHl3a5RcMG5D0Hz8YLT5BI0Pb9lz45bpmBxU-JncyS72yctkPBvd5tOHm7vR1TRHBqrJUVojkBonCskLUVFj5lwowJI7O3TlnDHBS8usspWEkgoj0XInugaljJC8T862c5ex_m5davSibmPoVmpWKMFoKWjRqYutMrFOKbpKL6P_6s7SQPX6Yxr07mOdPd9a9Ih_0_7DXxauaLo</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Hildebrand, Nathaniel</creator><creator>Mysore, Preethi V.</creator><creator>Choudhari, Meelan M.</creator><creator>Venkatachari, Balaji S.</creator><creator>Paredes, Pedro</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1890-1811</orcidid></search><sort><creationdate>202207</creationdate><title>Transition Prediction of Boundary Layers in the Presence of Backward-Facing Steps</title><author>Hildebrand, Nathaniel ; Mysore, Preethi V. ; Choudhari, Meelan M. ; Venkatachari, Balaji S. ; Paredes, Pedro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a218t-a5dc4a0ce465364f0ccb3481a93ed7e9b22439d2d8df51904c5ad3e4ce488c453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aircraft</topic><topic>Amplification</topic><topic>Aviation</topic><topic>Backward facing steps</topic><topic>Boundary layer transition</topic><topic>Dimensional analysis</topic><topic>Downstream effects</topic><topic>Energy efficiency</topic><topic>Flat plates</topic><topic>Methods</topic><topic>Parabolized stability equations</topic><topic>Physics</topic><topic>Pressure distribution</topic><topic>Reynolds number</topic><topic>Stability</topic><topic>Transport equations</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hildebrand, Nathaniel</creatorcontrib><creatorcontrib>Mysore, Preethi V.</creatorcontrib><creatorcontrib>Choudhari, Meelan M.</creatorcontrib><creatorcontrib>Venkatachari, Balaji S.</creatorcontrib><creatorcontrib>Paredes, Pedro</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hildebrand, Nathaniel</au><au>Mysore, Preethi V.</au><au>Choudhari, Meelan M.</au><au>Venkatachari, Balaji S.</au><au>Paredes, Pedro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transition Prediction of Boundary Layers in the Presence of Backward-Facing Steps</atitle><jtitle>AIAA journal</jtitle><date>2022-07</date><risdate>2022</risdate><volume>60</volume><issue>7</issue><spage>4149</spage><epage>4161</epage><pages>4149-4161</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>A set of available engineering models for the prediction of transition to turbulence is evaluated via comparisons with a high-quality experiment involving a backward-facing step (BFS) on a flat plate at subsonic freestream conditions. The streamwise shift in the transition location is monitored as the step height and flow speed are varied across step-height-to-local-displacement-thickness ratios of 0&lt;h/δ*&lt;1.6. We apply the N-factor method based on the linear amplification of boundary-layer instabilities to laminar two-dimensional basic states. N-factor correlations that rely on quasi-parallel linear stability theory (LST), the parabolized stability equations, and the harmonic linearized Navier–Stokes equations (HLNSE) yield good agreement with the experimental data, except if the onset of transition occurs slightly downstream of the BFS. For LST, the neglect of nonparallel flow effects results in transition locations that are further upstream compared to HLNSE. In contrast, models that use auxiliary transport equations and transition correlations based on local parameters fail to capture the physics associated with a BFS for moderate step heights. Specifically, the results obtained with the γ−Reθt model indicate that it is unable to account for the flow history effects. Results show the amplification-factor-transport model also fails to capture the BFS effects in spite of accounting for the basic-state distortion near the step.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J061296</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1890-1811</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2022-07, Vol.60 (7), p.4149-4161
issn 0001-1452
1533-385X
language eng
recordid cdi_proquest_journals_2684209406
source Alma/SFX Local Collection
subjects Aircraft
Amplification
Aviation
Backward facing steps
Boundary layer transition
Dimensional analysis
Downstream effects
Energy efficiency
Flat plates
Methods
Parabolized stability equations
Physics
Pressure distribution
Reynolds number
Stability
Transport equations
Viscosity
title Transition Prediction of Boundary Layers in the Presence of Backward-Facing Steps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T02%3A24%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transition%20Prediction%20of%20Boundary%20Layers%20in%20the%20Presence%20of%20Backward-Facing%20Steps&rft.jtitle=AIAA%20journal&rft.au=Hildebrand,%20Nathaniel&rft.date=2022-07&rft.volume=60&rft.issue=7&rft.spage=4149&rft.epage=4161&rft.pages=4149-4161&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J061296&rft_dat=%3Cproquest_aiaa_%3E2684209406%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2684209406&rft_id=info:pmid/&rfr_iscdi=true