Detection of remote sensing targets with angles via modified CenterNet

•A modified CenterNet architecture guarantees the effective detection of targets with angles in remote sensing images.•A lightweight backbone possesses the capability of ensuring the high time and space efficiency.•A splicing strategy improves the detection effects for boundary targets.•Real-world e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & electrical engineering 2022-05, Vol.100, p.107979, Article 107979
Hauptverfasser: Wang, Xin, Zhang, Zhilu, Dai, Huifeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 107979
container_title Computers & electrical engineering
container_volume 100
creator Wang, Xin
Zhang, Zhilu
Dai, Huifeng
description •A modified CenterNet architecture guarantees the effective detection of targets with angles in remote sensing images.•A lightweight backbone possesses the capability of ensuring the high time and space efficiency.•A splicing strategy improves the detection effects for boundary targets.•Real-world experiments demonstrate the effectiveness. Remote sensing (RS) target detection aims to automatically detect and classify different targets in RS images. Due to the variability of target angles, detection of targets with angles remains a widely unsolved challenge. In this paper, we propose a modified CenterNet model to detect targets with angles in remote sensing images. The proposed network is sensitive to direction, which is beneficial to detect targets with angles precisely. In our framework, a lightweight backbone, called HRNet, is adopted instead of the traditional backbones of the conventional CenterNet, which is able to guarantee the high time and space efficiency. Moreover, a splicing strategy is introduced for optimizing the detection of boundary targets. Extensive experiments are conducted on a publicly available RS data set, and the results show that the proposed method can achieve better accuracy and higher efficiency than several state-of-the-art algorithms. [Display omitted]
doi_str_mv 10.1016/j.compeleceng.2022.107979
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2684208972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004579062200249X</els_id><sourcerecordid>2684208972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-4fa8e6d79e425baaffc8a503bb8434990feca0f09e4babb89abff0128d095b8f3</originalsourceid><addsrcrecordid>eNqNkDFPwzAQhS0EEqXwH4yYUxw3ie0RFQpIFSwwW45zDo4au9huEf8eV2FgZDrd3XvvdB9C1yVZlKRsboeF9uMOtqDB9QtKKM1zJpg4QbOSM1EQVtenaEZIVRdMkOYcXcQ4kNw3JZ-h9T0k0Ml6h73BAUafAEdw0boeJxV6SBF_2fSBleu3EPHBKjz6zhoLHV6BSxBeIF2iM6O2Ea5-6xy9rx_eVk_F5vXxeXW3KTRlIhWVURyajgmoaN0qZYzmqibLtuXVshKCGNCKGJL3rcpDoVpjSEl5R0TdcrOco5spdxf85x5ikoPfB5dPStrwihIuGM0qMal08DEGMHIX7KjCtyyJPGKTg_yDTR6xyQlb9q4mL-Q3DhaCjNqC09DZkEHJztt_pPwACP99UA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684208972</pqid></control><display><type>article</type><title>Detection of remote sensing targets with angles via modified CenterNet</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Xin ; Zhang, Zhilu ; Dai, Huifeng</creator><creatorcontrib>Wang, Xin ; Zhang, Zhilu ; Dai, Huifeng</creatorcontrib><description>•A modified CenterNet architecture guarantees the effective detection of targets with angles in remote sensing images.•A lightweight backbone possesses the capability of ensuring the high time and space efficiency.•A splicing strategy improves the detection effects for boundary targets.•Real-world experiments demonstrate the effectiveness. Remote sensing (RS) target detection aims to automatically detect and classify different targets in RS images. Due to the variability of target angles, detection of targets with angles remains a widely unsolved challenge. In this paper, we propose a modified CenterNet model to detect targets with angles in remote sensing images. The proposed network is sensitive to direction, which is beneficial to detect targets with angles precisely. In our framework, a lightweight backbone, called HRNet, is adopted instead of the traditional backbones of the conventional CenterNet, which is able to guarantee the high time and space efficiency. Moreover, a splicing strategy is introduced for optimizing the detection of boundary targets. Extensive experiments are conducted on a publicly available RS data set, and the results show that the proposed method can achieve better accuracy and higher efficiency than several state-of-the-art algorithms. [Display omitted]</description><identifier>ISSN: 0045-7906</identifier><identifier>EISSN: 1879-0755</identifier><identifier>DOI: 10.1016/j.compeleceng.2022.107979</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Algorithms ; CenterNet ; Deep learning ; HRNet ; Image classification ; Remote sensing ; Splicing ; Target detection</subject><ispartof>Computers &amp; electrical engineering, 2022-05, Vol.100, p.107979, Article 107979</ispartof><rights>2022</rights><rights>Copyright Elsevier BV May 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-4fa8e6d79e425baaffc8a503bb8434990feca0f09e4babb89abff0128d095b8f3</citedby><cites>FETCH-LOGICAL-c279t-4fa8e6d79e425baaffc8a503bb8434990feca0f09e4babb89abff0128d095b8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S004579062200249X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Zhang, Zhilu</creatorcontrib><creatorcontrib>Dai, Huifeng</creatorcontrib><title>Detection of remote sensing targets with angles via modified CenterNet</title><title>Computers &amp; electrical engineering</title><description>•A modified CenterNet architecture guarantees the effective detection of targets with angles in remote sensing images.•A lightweight backbone possesses the capability of ensuring the high time and space efficiency.•A splicing strategy improves the detection effects for boundary targets.•Real-world experiments demonstrate the effectiveness. Remote sensing (RS) target detection aims to automatically detect and classify different targets in RS images. Due to the variability of target angles, detection of targets with angles remains a widely unsolved challenge. In this paper, we propose a modified CenterNet model to detect targets with angles in remote sensing images. The proposed network is sensitive to direction, which is beneficial to detect targets with angles precisely. In our framework, a lightweight backbone, called HRNet, is adopted instead of the traditional backbones of the conventional CenterNet, which is able to guarantee the high time and space efficiency. Moreover, a splicing strategy is introduced for optimizing the detection of boundary targets. Extensive experiments are conducted on a publicly available RS data set, and the results show that the proposed method can achieve better accuracy and higher efficiency than several state-of-the-art algorithms. [Display omitted]</description><subject>Algorithms</subject><subject>CenterNet</subject><subject>Deep learning</subject><subject>HRNet</subject><subject>Image classification</subject><subject>Remote sensing</subject><subject>Splicing</subject><subject>Target detection</subject><issn>0045-7906</issn><issn>1879-0755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkDFPwzAQhS0EEqXwH4yYUxw3ie0RFQpIFSwwW45zDo4au9huEf8eV2FgZDrd3XvvdB9C1yVZlKRsboeF9uMOtqDB9QtKKM1zJpg4QbOSM1EQVtenaEZIVRdMkOYcXcQ4kNw3JZ-h9T0k0Ml6h73BAUafAEdw0boeJxV6SBF_2fSBleu3EPHBKjz6zhoLHV6BSxBeIF2iM6O2Ea5-6xy9rx_eVk_F5vXxeXW3KTRlIhWVURyajgmoaN0qZYzmqibLtuXVshKCGNCKGJL3rcpDoVpjSEl5R0TdcrOco5spdxf85x5ikoPfB5dPStrwihIuGM0qMal08DEGMHIX7KjCtyyJPGKTg_yDTR6xyQlb9q4mL-Q3DhaCjNqC09DZkEHJztt_pPwACP99UA</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Wang, Xin</creator><creator>Zhang, Zhilu</creator><creator>Dai, Huifeng</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202205</creationdate><title>Detection of remote sensing targets with angles via modified CenterNet</title><author>Wang, Xin ; Zhang, Zhilu ; Dai, Huifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-4fa8e6d79e425baaffc8a503bb8434990feca0f09e4babb89abff0128d095b8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>CenterNet</topic><topic>Deep learning</topic><topic>HRNet</topic><topic>Image classification</topic><topic>Remote sensing</topic><topic>Splicing</topic><topic>Target detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Zhang, Zhilu</creatorcontrib><creatorcontrib>Dai, Huifeng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xin</au><au>Zhang, Zhilu</au><au>Dai, Huifeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of remote sensing targets with angles via modified CenterNet</atitle><jtitle>Computers &amp; electrical engineering</jtitle><date>2022-05</date><risdate>2022</risdate><volume>100</volume><spage>107979</spage><pages>107979-</pages><artnum>107979</artnum><issn>0045-7906</issn><eissn>1879-0755</eissn><abstract>•A modified CenterNet architecture guarantees the effective detection of targets with angles in remote sensing images.•A lightweight backbone possesses the capability of ensuring the high time and space efficiency.•A splicing strategy improves the detection effects for boundary targets.•Real-world experiments demonstrate the effectiveness. Remote sensing (RS) target detection aims to automatically detect and classify different targets in RS images. Due to the variability of target angles, detection of targets with angles remains a widely unsolved challenge. In this paper, we propose a modified CenterNet model to detect targets with angles in remote sensing images. The proposed network is sensitive to direction, which is beneficial to detect targets with angles precisely. In our framework, a lightweight backbone, called HRNet, is adopted instead of the traditional backbones of the conventional CenterNet, which is able to guarantee the high time and space efficiency. Moreover, a splicing strategy is introduced for optimizing the detection of boundary targets. Extensive experiments are conducted on a publicly available RS data set, and the results show that the proposed method can achieve better accuracy and higher efficiency than several state-of-the-art algorithms. [Display omitted]</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compeleceng.2022.107979</doi></addata></record>
fulltext fulltext
identifier ISSN: 0045-7906
ispartof Computers & electrical engineering, 2022-05, Vol.100, p.107979, Article 107979
issn 0045-7906
1879-0755
language eng
recordid cdi_proquest_journals_2684208972
source Elsevier ScienceDirect Journals
subjects Algorithms
CenterNet
Deep learning
HRNet
Image classification
Remote sensing
Splicing
Target detection
title Detection of remote sensing targets with angles via modified CenterNet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A17%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20remote%20sensing%20targets%20with%20angles%20via%20modified%20CenterNet&rft.jtitle=Computers%20&%20electrical%20engineering&rft.au=Wang,%20Xin&rft.date=2022-05&rft.volume=100&rft.spage=107979&rft.pages=107979-&rft.artnum=107979&rft.issn=0045-7906&rft.eissn=1879-0755&rft_id=info:doi/10.1016/j.compeleceng.2022.107979&rft_dat=%3Cproquest_cross%3E2684208972%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2684208972&rft_id=info:pmid/&rft_els_id=S004579062200249X&rfr_iscdi=true