Detection of remote sensing targets with angles via modified CenterNet
•A modified CenterNet architecture guarantees the effective detection of targets with angles in remote sensing images.•A lightweight backbone possesses the capability of ensuring the high time and space efficiency.•A splicing strategy improves the detection effects for boundary targets.•Real-world e...
Gespeichert in:
Veröffentlicht in: | Computers & electrical engineering 2022-05, Vol.100, p.107979, Article 107979 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 107979 |
container_title | Computers & electrical engineering |
container_volume | 100 |
creator | Wang, Xin Zhang, Zhilu Dai, Huifeng |
description | •A modified CenterNet architecture guarantees the effective detection of targets with angles in remote sensing images.•A lightweight backbone possesses the capability of ensuring the high time and space efficiency.•A splicing strategy improves the detection effects for boundary targets.•Real-world experiments demonstrate the effectiveness.
Remote sensing (RS) target detection aims to automatically detect and classify different targets in RS images. Due to the variability of target angles, detection of targets with angles remains a widely unsolved challenge. In this paper, we propose a modified CenterNet model to detect targets with angles in remote sensing images. The proposed network is sensitive to direction, which is beneficial to detect targets with angles precisely. In our framework, a lightweight backbone, called HRNet, is adopted instead of the traditional backbones of the conventional CenterNet, which is able to guarantee the high time and space efficiency. Moreover, a splicing strategy is introduced for optimizing the detection of boundary targets. Extensive experiments are conducted on a publicly available RS data set, and the results show that the proposed method can achieve better accuracy and higher efficiency than several state-of-the-art algorithms.
[Display omitted] |
doi_str_mv | 10.1016/j.compeleceng.2022.107979 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2684208972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004579062200249X</els_id><sourcerecordid>2684208972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-4fa8e6d79e425baaffc8a503bb8434990feca0f09e4babb89abff0128d095b8f3</originalsourceid><addsrcrecordid>eNqNkDFPwzAQhS0EEqXwH4yYUxw3ie0RFQpIFSwwW45zDo4au9huEf8eV2FgZDrd3XvvdB9C1yVZlKRsboeF9uMOtqDB9QtKKM1zJpg4QbOSM1EQVtenaEZIVRdMkOYcXcQ4kNw3JZ-h9T0k0Ml6h73BAUafAEdw0boeJxV6SBF_2fSBleu3EPHBKjz6zhoLHV6BSxBeIF2iM6O2Ea5-6xy9rx_eVk_F5vXxeXW3KTRlIhWVURyajgmoaN0qZYzmqibLtuXVshKCGNCKGJL3rcpDoVpjSEl5R0TdcrOco5spdxf85x5ikoPfB5dPStrwihIuGM0qMal08DEGMHIX7KjCtyyJPGKTg_yDTR6xyQlb9q4mL-Q3DhaCjNqC09DZkEHJztt_pPwACP99UA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684208972</pqid></control><display><type>article</type><title>Detection of remote sensing targets with angles via modified CenterNet</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Xin ; Zhang, Zhilu ; Dai, Huifeng</creator><creatorcontrib>Wang, Xin ; Zhang, Zhilu ; Dai, Huifeng</creatorcontrib><description>•A modified CenterNet architecture guarantees the effective detection of targets with angles in remote sensing images.•A lightweight backbone possesses the capability of ensuring the high time and space efficiency.•A splicing strategy improves the detection effects for boundary targets.•Real-world experiments demonstrate the effectiveness.
Remote sensing (RS) target detection aims to automatically detect and classify different targets in RS images. Due to the variability of target angles, detection of targets with angles remains a widely unsolved challenge. In this paper, we propose a modified CenterNet model to detect targets with angles in remote sensing images. The proposed network is sensitive to direction, which is beneficial to detect targets with angles precisely. In our framework, a lightweight backbone, called HRNet, is adopted instead of the traditional backbones of the conventional CenterNet, which is able to guarantee the high time and space efficiency. Moreover, a splicing strategy is introduced for optimizing the detection of boundary targets. Extensive experiments are conducted on a publicly available RS data set, and the results show that the proposed method can achieve better accuracy and higher efficiency than several state-of-the-art algorithms.
[Display omitted]</description><identifier>ISSN: 0045-7906</identifier><identifier>EISSN: 1879-0755</identifier><identifier>DOI: 10.1016/j.compeleceng.2022.107979</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Algorithms ; CenterNet ; Deep learning ; HRNet ; Image classification ; Remote sensing ; Splicing ; Target detection</subject><ispartof>Computers & electrical engineering, 2022-05, Vol.100, p.107979, Article 107979</ispartof><rights>2022</rights><rights>Copyright Elsevier BV May 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-4fa8e6d79e425baaffc8a503bb8434990feca0f09e4babb89abff0128d095b8f3</citedby><cites>FETCH-LOGICAL-c279t-4fa8e6d79e425baaffc8a503bb8434990feca0f09e4babb89abff0128d095b8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S004579062200249X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Zhang, Zhilu</creatorcontrib><creatorcontrib>Dai, Huifeng</creatorcontrib><title>Detection of remote sensing targets with angles via modified CenterNet</title><title>Computers & electrical engineering</title><description>•A modified CenterNet architecture guarantees the effective detection of targets with angles in remote sensing images.•A lightweight backbone possesses the capability of ensuring the high time and space efficiency.•A splicing strategy improves the detection effects for boundary targets.•Real-world experiments demonstrate the effectiveness.
Remote sensing (RS) target detection aims to automatically detect and classify different targets in RS images. Due to the variability of target angles, detection of targets with angles remains a widely unsolved challenge. In this paper, we propose a modified CenterNet model to detect targets with angles in remote sensing images. The proposed network is sensitive to direction, which is beneficial to detect targets with angles precisely. In our framework, a lightweight backbone, called HRNet, is adopted instead of the traditional backbones of the conventional CenterNet, which is able to guarantee the high time and space efficiency. Moreover, a splicing strategy is introduced for optimizing the detection of boundary targets. Extensive experiments are conducted on a publicly available RS data set, and the results show that the proposed method can achieve better accuracy and higher efficiency than several state-of-the-art algorithms.
[Display omitted]</description><subject>Algorithms</subject><subject>CenterNet</subject><subject>Deep learning</subject><subject>HRNet</subject><subject>Image classification</subject><subject>Remote sensing</subject><subject>Splicing</subject><subject>Target detection</subject><issn>0045-7906</issn><issn>1879-0755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkDFPwzAQhS0EEqXwH4yYUxw3ie0RFQpIFSwwW45zDo4au9huEf8eV2FgZDrd3XvvdB9C1yVZlKRsboeF9uMOtqDB9QtKKM1zJpg4QbOSM1EQVtenaEZIVRdMkOYcXcQ4kNw3JZ-h9T0k0Ml6h73BAUafAEdw0boeJxV6SBF_2fSBleu3EPHBKjz6zhoLHV6BSxBeIF2iM6O2Ea5-6xy9rx_eVk_F5vXxeXW3KTRlIhWVURyajgmoaN0qZYzmqibLtuXVshKCGNCKGJL3rcpDoVpjSEl5R0TdcrOco5spdxf85x5ikoPfB5dPStrwihIuGM0qMal08DEGMHIX7KjCtyyJPGKTg_yDTR6xyQlb9q4mL-Q3DhaCjNqC09DZkEHJztt_pPwACP99UA</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Wang, Xin</creator><creator>Zhang, Zhilu</creator><creator>Dai, Huifeng</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202205</creationdate><title>Detection of remote sensing targets with angles via modified CenterNet</title><author>Wang, Xin ; Zhang, Zhilu ; Dai, Huifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-4fa8e6d79e425baaffc8a503bb8434990feca0f09e4babb89abff0128d095b8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>CenterNet</topic><topic>Deep learning</topic><topic>HRNet</topic><topic>Image classification</topic><topic>Remote sensing</topic><topic>Splicing</topic><topic>Target detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Zhang, Zhilu</creatorcontrib><creatorcontrib>Dai, Huifeng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xin</au><au>Zhang, Zhilu</au><au>Dai, Huifeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of remote sensing targets with angles via modified CenterNet</atitle><jtitle>Computers & electrical engineering</jtitle><date>2022-05</date><risdate>2022</risdate><volume>100</volume><spage>107979</spage><pages>107979-</pages><artnum>107979</artnum><issn>0045-7906</issn><eissn>1879-0755</eissn><abstract>•A modified CenterNet architecture guarantees the effective detection of targets with angles in remote sensing images.•A lightweight backbone possesses the capability of ensuring the high time and space efficiency.•A splicing strategy improves the detection effects for boundary targets.•Real-world experiments demonstrate the effectiveness.
Remote sensing (RS) target detection aims to automatically detect and classify different targets in RS images. Due to the variability of target angles, detection of targets with angles remains a widely unsolved challenge. In this paper, we propose a modified CenterNet model to detect targets with angles in remote sensing images. The proposed network is sensitive to direction, which is beneficial to detect targets with angles precisely. In our framework, a lightweight backbone, called HRNet, is adopted instead of the traditional backbones of the conventional CenterNet, which is able to guarantee the high time and space efficiency. Moreover, a splicing strategy is introduced for optimizing the detection of boundary targets. Extensive experiments are conducted on a publicly available RS data set, and the results show that the proposed method can achieve better accuracy and higher efficiency than several state-of-the-art algorithms.
[Display omitted]</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compeleceng.2022.107979</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7906 |
ispartof | Computers & electrical engineering, 2022-05, Vol.100, p.107979, Article 107979 |
issn | 0045-7906 1879-0755 |
language | eng |
recordid | cdi_proquest_journals_2684208972 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms CenterNet Deep learning HRNet Image classification Remote sensing Splicing Target detection |
title | Detection of remote sensing targets with angles via modified CenterNet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A17%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20remote%20sensing%20targets%20with%20angles%20via%20modified%20CenterNet&rft.jtitle=Computers%20&%20electrical%20engineering&rft.au=Wang,%20Xin&rft.date=2022-05&rft.volume=100&rft.spage=107979&rft.pages=107979-&rft.artnum=107979&rft.issn=0045-7906&rft.eissn=1879-0755&rft_id=info:doi/10.1016/j.compeleceng.2022.107979&rft_dat=%3Cproquest_cross%3E2684208972%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2684208972&rft_id=info:pmid/&rft_els_id=S004579062200249X&rfr_iscdi=true |