Intelligent deep learning-enabled autonomous small ship detection and classification model
•Develop a deep learning model for automated small ship detection and classification.•Employ hyperparameter tuned Mask RCNN with SqueezeNet model for ship detection.•Introduce an optimal weighted regularized ELM model for small ship classification. Autonomous ship technologies have gained considerab...
Gespeichert in:
Veröffentlicht in: | Computers & electrical engineering 2022-05, Vol.100, p.107871, Article 107871 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 107871 |
container_title | Computers & electrical engineering |
container_volume | 100 |
creator | Escorcia-Gutierrez, José Gamarra, Margarita Beleño, Kelvin Soto, Carlos Mansour, Romany F. |
description | •Develop a deep learning model for automated small ship detection and classification.•Employ hyperparameter tuned Mask RCNN with SqueezeNet model for ship detection.•Introduce an optimal weighted regularized ELM model for small ship classification.
Autonomous ship technologies have gained considerable interest due to the minimization of the challenging issues faced by the unpredictable errors of manual navigation, and therefore reduces human labor, increasing navigation security and profit margin. On autonomous shipping technologies, small ship detection is vital in ensuring shipping safety. With this motivation, this paper presents an efficient optimal mask regional convolutional neural network (Mask-CNN) technique for small ship detection (OMRCNN-SHD) on autonomous shipping technologies. Primarily, the data augmentation process is performed to resolve the issue of the limited number of real-world samples of small ships and helps to detect small ships in most cases accurately. Besides, the Mask RCNN with SqueezeNet model is used to detect ships and the hyperparameter tuning of the SqueezeNet model takes place by the use of the Adagrad optimizer. Furthermore, the Colliding Body's Optimization (CBO) algorithm with the weighted regularized extreme learning machine (WRELM) technique is employed to classify detected ships effectively. The comparative results analysis demonstrates the betterment of the OMRCNN-SHD technique over the current methods with the maximum accuracy of 98.63%.
[Display omitted] |
doi_str_mv | 10.1016/j.compeleceng.2022.107871 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2684207783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045790622001616</els_id><sourcerecordid>2684207783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-331f1fcbc22026c6a106fd72875ae9507f302d79b258b1b56e7a5ebf7800a8343</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEqXwD0GsU8bOw84SVTwqVWIDGzaW40yKI8cOdorE3-NSFixZjWZ0752ZQ8g1hRUFWt8OK-3HCS1qdLsVA8bSnAtOT8iCCt7kwKvqlCwAyirnDdTn5CLGAVJfU7Egbxs3o7Vmh27OOsQps6iCM26Xo1OtxS5T-9k7P_p9zOKorM3iu5mSdkY9G-8y5bpMWxWj6Y1WP6PRd2gvyVmvbMSr37okrw_3L-unfPv8uFnfbXNdAsx5UdCe9rrVLF1f61pRqPuOM8ErhU0FvC-AdbxpWSVa2lY1clVh23MBoERRFktyc8ydgv_YY5zl4PfBpZWS1aJkwLkokqo5qnTwMQbs5RTMqMKXpCAPKOUg_6CUB5TyiDJ510cvpjc-DQYZtUGnsTMhQZCdN_9I-QYH8IOk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684207783</pqid></control><display><type>article</type><title>Intelligent deep learning-enabled autonomous small ship detection and classification model</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Escorcia-Gutierrez, José ; Gamarra, Margarita ; Beleño, Kelvin ; Soto, Carlos ; Mansour, Romany F.</creator><creatorcontrib>Escorcia-Gutierrez, José ; Gamarra, Margarita ; Beleño, Kelvin ; Soto, Carlos ; Mansour, Romany F.</creatorcontrib><description>•Develop a deep learning model for automated small ship detection and classification.•Employ hyperparameter tuned Mask RCNN with SqueezeNet model for ship detection.•Introduce an optimal weighted regularized ELM model for small ship classification.
Autonomous ship technologies have gained considerable interest due to the minimization of the challenging issues faced by the unpredictable errors of manual navigation, and therefore reduces human labor, increasing navigation security and profit margin. On autonomous shipping technologies, small ship detection is vital in ensuring shipping safety. With this motivation, this paper presents an efficient optimal mask regional convolutional neural network (Mask-CNN) technique for small ship detection (OMRCNN-SHD) on autonomous shipping technologies. Primarily, the data augmentation process is performed to resolve the issue of the limited number of real-world samples of small ships and helps to detect small ships in most cases accurately. Besides, the Mask RCNN with SqueezeNet model is used to detect ships and the hyperparameter tuning of the SqueezeNet model takes place by the use of the Adagrad optimizer. Furthermore, the Colliding Body's Optimization (CBO) algorithm with the weighted regularized extreme learning machine (WRELM) technique is employed to classify detected ships effectively. The comparative results analysis demonstrates the betterment of the OMRCNN-SHD technique over the current methods with the maximum accuracy of 98.63%.
[Display omitted]</description><identifier>ISSN: 0045-7906</identifier><identifier>EISSN: 1879-0755</identifier><identifier>DOI: 10.1016/j.compeleceng.2022.107871</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Algorithms ; Artificial intelligence ; Artificial neural networks ; Autonomous systems ; Deep learning ; Machine learning ; Mask RCNN ; Navigation ; Optimization ; Parameter optimization ; Ship detection ; Shipping ; Ships</subject><ispartof>Computers & electrical engineering, 2022-05, Vol.100, p.107871, Article 107871</ispartof><rights>2022</rights><rights>Copyright Elsevier BV May 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-331f1fcbc22026c6a106fd72875ae9507f302d79b258b1b56e7a5ebf7800a8343</citedby><cites>FETCH-LOGICAL-c400t-331f1fcbc22026c6a106fd72875ae9507f302d79b258b1b56e7a5ebf7800a8343</cites><orcidid>0000-0003-0518-3187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045790622001616$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Escorcia-Gutierrez, José</creatorcontrib><creatorcontrib>Gamarra, Margarita</creatorcontrib><creatorcontrib>Beleño, Kelvin</creatorcontrib><creatorcontrib>Soto, Carlos</creatorcontrib><creatorcontrib>Mansour, Romany F.</creatorcontrib><title>Intelligent deep learning-enabled autonomous small ship detection and classification model</title><title>Computers & electrical engineering</title><description>•Develop a deep learning model for automated small ship detection and classification.•Employ hyperparameter tuned Mask RCNN with SqueezeNet model for ship detection.•Introduce an optimal weighted regularized ELM model for small ship classification.
Autonomous ship technologies have gained considerable interest due to the minimization of the challenging issues faced by the unpredictable errors of manual navigation, and therefore reduces human labor, increasing navigation security and profit margin. On autonomous shipping technologies, small ship detection is vital in ensuring shipping safety. With this motivation, this paper presents an efficient optimal mask regional convolutional neural network (Mask-CNN) technique for small ship detection (OMRCNN-SHD) on autonomous shipping technologies. Primarily, the data augmentation process is performed to resolve the issue of the limited number of real-world samples of small ships and helps to detect small ships in most cases accurately. Besides, the Mask RCNN with SqueezeNet model is used to detect ships and the hyperparameter tuning of the SqueezeNet model takes place by the use of the Adagrad optimizer. Furthermore, the Colliding Body's Optimization (CBO) algorithm with the weighted regularized extreme learning machine (WRELM) technique is employed to classify detected ships effectively. The comparative results analysis demonstrates the betterment of the OMRCNN-SHD technique over the current methods with the maximum accuracy of 98.63%.
[Display omitted]</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Autonomous systems</subject><subject>Deep learning</subject><subject>Machine learning</subject><subject>Mask RCNN</subject><subject>Navigation</subject><subject>Optimization</subject><subject>Parameter optimization</subject><subject>Ship detection</subject><subject>Shipping</subject><subject>Ships</subject><issn>0045-7906</issn><issn>1879-0755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EEqXwD0GsU8bOw84SVTwqVWIDGzaW40yKI8cOdorE3-NSFixZjWZ0752ZQ8g1hRUFWt8OK-3HCS1qdLsVA8bSnAtOT8iCCt7kwKvqlCwAyirnDdTn5CLGAVJfU7Egbxs3o7Vmh27OOsQps6iCM26Xo1OtxS5T-9k7P_p9zOKorM3iu5mSdkY9G-8y5bpMWxWj6Y1WP6PRd2gvyVmvbMSr37okrw_3L-unfPv8uFnfbXNdAsx5UdCe9rrVLF1f61pRqPuOM8ErhU0FvC-AdbxpWSVa2lY1clVh23MBoERRFktyc8ydgv_YY5zl4PfBpZWS1aJkwLkokqo5qnTwMQbs5RTMqMKXpCAPKOUg_6CUB5TyiDJ510cvpjc-DQYZtUGnsTMhQZCdN_9I-QYH8IOk</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Escorcia-Gutierrez, José</creator><creator>Gamarra, Margarita</creator><creator>Beleño, Kelvin</creator><creator>Soto, Carlos</creator><creator>Mansour, Romany F.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0518-3187</orcidid></search><sort><creationdate>202205</creationdate><title>Intelligent deep learning-enabled autonomous small ship detection and classification model</title><author>Escorcia-Gutierrez, José ; Gamarra, Margarita ; Beleño, Kelvin ; Soto, Carlos ; Mansour, Romany F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-331f1fcbc22026c6a106fd72875ae9507f302d79b258b1b56e7a5ebf7800a8343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Autonomous systems</topic><topic>Deep learning</topic><topic>Machine learning</topic><topic>Mask RCNN</topic><topic>Navigation</topic><topic>Optimization</topic><topic>Parameter optimization</topic><topic>Ship detection</topic><topic>Shipping</topic><topic>Ships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Escorcia-Gutierrez, José</creatorcontrib><creatorcontrib>Gamarra, Margarita</creatorcontrib><creatorcontrib>Beleño, Kelvin</creatorcontrib><creatorcontrib>Soto, Carlos</creatorcontrib><creatorcontrib>Mansour, Romany F.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Escorcia-Gutierrez, José</au><au>Gamarra, Margarita</au><au>Beleño, Kelvin</au><au>Soto, Carlos</au><au>Mansour, Romany F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent deep learning-enabled autonomous small ship detection and classification model</atitle><jtitle>Computers & electrical engineering</jtitle><date>2022-05</date><risdate>2022</risdate><volume>100</volume><spage>107871</spage><pages>107871-</pages><artnum>107871</artnum><issn>0045-7906</issn><eissn>1879-0755</eissn><abstract>•Develop a deep learning model for automated small ship detection and classification.•Employ hyperparameter tuned Mask RCNN with SqueezeNet model for ship detection.•Introduce an optimal weighted regularized ELM model for small ship classification.
Autonomous ship technologies have gained considerable interest due to the minimization of the challenging issues faced by the unpredictable errors of manual navigation, and therefore reduces human labor, increasing navigation security and profit margin. On autonomous shipping technologies, small ship detection is vital in ensuring shipping safety. With this motivation, this paper presents an efficient optimal mask regional convolutional neural network (Mask-CNN) technique for small ship detection (OMRCNN-SHD) on autonomous shipping technologies. Primarily, the data augmentation process is performed to resolve the issue of the limited number of real-world samples of small ships and helps to detect small ships in most cases accurately. Besides, the Mask RCNN with SqueezeNet model is used to detect ships and the hyperparameter tuning of the SqueezeNet model takes place by the use of the Adagrad optimizer. Furthermore, the Colliding Body's Optimization (CBO) algorithm with the weighted regularized extreme learning machine (WRELM) technique is employed to classify detected ships effectively. The comparative results analysis demonstrates the betterment of the OMRCNN-SHD technique over the current methods with the maximum accuracy of 98.63%.
[Display omitted]</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compeleceng.2022.107871</doi><orcidid>https://orcid.org/0000-0003-0518-3187</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7906 |
ispartof | Computers & electrical engineering, 2022-05, Vol.100, p.107871, Article 107871 |
issn | 0045-7906 1879-0755 |
language | eng |
recordid | cdi_proquest_journals_2684207783 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Artificial intelligence Artificial neural networks Autonomous systems Deep learning Machine learning Mask RCNN Navigation Optimization Parameter optimization Ship detection Shipping Ships |
title | Intelligent deep learning-enabled autonomous small ship detection and classification model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A54%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20deep%20learning-enabled%20autonomous%20small%20ship%20detection%20and%20classification%20model&rft.jtitle=Computers%20&%20electrical%20engineering&rft.au=Escorcia-Gutierrez,%20Jos%C3%A9&rft.date=2022-05&rft.volume=100&rft.spage=107871&rft.pages=107871-&rft.artnum=107871&rft.issn=0045-7906&rft.eissn=1879-0755&rft_id=info:doi/10.1016/j.compeleceng.2022.107871&rft_dat=%3Cproquest_cross%3E2684207783%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2684207783&rft_id=info:pmid/&rft_els_id=S0045790622001616&rfr_iscdi=true |