Hyers–Ulam Stability for a Coupled System of Fractional Differential Equation With p-Laplacian Operator Having Integral Boundary Conditions
In this article we explore the existence, uniqueness, and stability for a coupled symmetric system of fractional differential equation with nonlinear p -Laplacian operator. Existence and uniqueness results are obtained by using the matrix eigenvalue method. Further, we study different types of Hyers...
Gespeichert in:
Veröffentlicht in: | Qualitative theory of dynamical systems 2022-09, Vol.21 (3), Article 92 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Qualitative theory of dynamical systems |
container_volume | 21 |
creator | Waheed, Hira Zada, Akbar Rizwan, Rizwan Popa, Ioan-Lucian |
description | In this article we explore the existence, uniqueness, and stability for a coupled symmetric system of fractional differential equation with nonlinear
p
-Laplacian operator. Existence and uniqueness results are obtained by using the matrix eigenvalue method. Further, we study different types of Hyers–Ulam stability. In the last section an example concerning the proposed problem is presented. |
doi_str_mv | 10.1007/s12346-022-00624-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2684169657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2684169657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-a0a6f50ed51538a1abbae1be5960383110318a5c697046274c6c26049a73b6973</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhSMEEqVwAVaWWBv8EzvJEkpLK1XqolQsrUnqFFdpktoOUndcgBU35CQ4FIkdq_GM3vfG86LompJbSkhy5yjjscSEMUyIZDFOT6IBlZJhLjJ2Gt4iEVjEkpxHF85te1HC2SD6mB60dV_vn6sKdmjpITeV8QdUNhYBGjVdW-k1Wh6c1zvUlGhiofCmqaFCj6YstdW1N6EZ7zvo5-jF-FfU4jm0FRQGarRotQUf7KbwZuoNmtVeb2xAHpquXoM9hC312vSwu4zOSqicvvqtw2g1GT-Ppni-eJqN7ue4YHHmMRCQpSB6LajgKVDIc9A01yKThKecUsJpCqKQWULicGhcyIJJEmeQ8DwM-TC6Ofq2ttl32nm1bTobjnKKyTSmMpOiV7GjqrCNc1aXqrVmF36sKFF97OoYuwqxq5_YVRogfoRcENcbbf-s_6G-AWLkh08</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684169657</pqid></control><display><type>article</type><title>Hyers–Ulam Stability for a Coupled System of Fractional Differential Equation With p-Laplacian Operator Having Integral Boundary Conditions</title><source>SpringerNature Journals</source><creator>Waheed, Hira ; Zada, Akbar ; Rizwan, Rizwan ; Popa, Ioan-Lucian</creator><creatorcontrib>Waheed, Hira ; Zada, Akbar ; Rizwan, Rizwan ; Popa, Ioan-Lucian</creatorcontrib><description>In this article we explore the existence, uniqueness, and stability for a coupled symmetric system of fractional differential equation with nonlinear
p
-Laplacian operator. Existence and uniqueness results are obtained by using the matrix eigenvalue method. Further, we study different types of Hyers–Ulam stability. In the last section an example concerning the proposed problem is presented.</description><identifier>ISSN: 1575-5460</identifier><identifier>EISSN: 1662-3592</identifier><identifier>DOI: 10.1007/s12346-022-00624-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Boundary conditions ; Difference and Functional Equations ; Differential equations ; Dynamical Systems and Ergodic Theory ; Eigenvalues ; Fractional calculus ; Laplace transforms ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Stability ; Uniqueness</subject><ispartof>Qualitative theory of dynamical systems, 2022-09, Vol.21 (3), Article 92</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-a0a6f50ed51538a1abbae1be5960383110318a5c697046274c6c26049a73b6973</citedby><cites>FETCH-LOGICAL-c249t-a0a6f50ed51538a1abbae1be5960383110318a5c697046274c6c26049a73b6973</cites><orcidid>0000-0002-2067-6943</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12346-022-00624-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12346-022-00624-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Waheed, Hira</creatorcontrib><creatorcontrib>Zada, Akbar</creatorcontrib><creatorcontrib>Rizwan, Rizwan</creatorcontrib><creatorcontrib>Popa, Ioan-Lucian</creatorcontrib><title>Hyers–Ulam Stability for a Coupled System of Fractional Differential Equation With p-Laplacian Operator Having Integral Boundary Conditions</title><title>Qualitative theory of dynamical systems</title><addtitle>Qual. Theory Dyn. Syst</addtitle><description>In this article we explore the existence, uniqueness, and stability for a coupled symmetric system of fractional differential equation with nonlinear
p
-Laplacian operator. Existence and uniqueness results are obtained by using the matrix eigenvalue method. Further, we study different types of Hyers–Ulam stability. In the last section an example concerning the proposed problem is presented.</description><subject>Boundary conditions</subject><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Eigenvalues</subject><subject>Fractional calculus</subject><subject>Laplace transforms</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Stability</subject><subject>Uniqueness</subject><issn>1575-5460</issn><issn>1662-3592</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhSMEEqVwAVaWWBv8EzvJEkpLK1XqolQsrUnqFFdpktoOUndcgBU35CQ4FIkdq_GM3vfG86LompJbSkhy5yjjscSEMUyIZDFOT6IBlZJhLjJ2Gt4iEVjEkpxHF85te1HC2SD6mB60dV_vn6sKdmjpITeV8QdUNhYBGjVdW-k1Wh6c1zvUlGhiofCmqaFCj6YstdW1N6EZ7zvo5-jF-FfU4jm0FRQGarRotQUf7KbwZuoNmtVeb2xAHpquXoM9hC312vSwu4zOSqicvvqtw2g1GT-Ppni-eJqN7ue4YHHmMRCQpSB6LajgKVDIc9A01yKThKecUsJpCqKQWULicGhcyIJJEmeQ8DwM-TC6Ofq2ttl32nm1bTobjnKKyTSmMpOiV7GjqrCNc1aXqrVmF36sKFF97OoYuwqxq5_YVRogfoRcENcbbf-s_6G-AWLkh08</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Waheed, Hira</creator><creator>Zada, Akbar</creator><creator>Rizwan, Rizwan</creator><creator>Popa, Ioan-Lucian</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2067-6943</orcidid></search><sort><creationdate>20220901</creationdate><title>Hyers–Ulam Stability for a Coupled System of Fractional Differential Equation With p-Laplacian Operator Having Integral Boundary Conditions</title><author>Waheed, Hira ; Zada, Akbar ; Rizwan, Rizwan ; Popa, Ioan-Lucian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-a0a6f50ed51538a1abbae1be5960383110318a5c697046274c6c26049a73b6973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary conditions</topic><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Eigenvalues</topic><topic>Fractional calculus</topic><topic>Laplace transforms</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Stability</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waheed, Hira</creatorcontrib><creatorcontrib>Zada, Akbar</creatorcontrib><creatorcontrib>Rizwan, Rizwan</creatorcontrib><creatorcontrib>Popa, Ioan-Lucian</creatorcontrib><collection>CrossRef</collection><jtitle>Qualitative theory of dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waheed, Hira</au><au>Zada, Akbar</au><au>Rizwan, Rizwan</au><au>Popa, Ioan-Lucian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyers–Ulam Stability for a Coupled System of Fractional Differential Equation With p-Laplacian Operator Having Integral Boundary Conditions</atitle><jtitle>Qualitative theory of dynamical systems</jtitle><stitle>Qual. Theory Dyn. Syst</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>21</volume><issue>3</issue><artnum>92</artnum><issn>1575-5460</issn><eissn>1662-3592</eissn><abstract>In this article we explore the existence, uniqueness, and stability for a coupled symmetric system of fractional differential equation with nonlinear
p
-Laplacian operator. Existence and uniqueness results are obtained by using the matrix eigenvalue method. Further, we study different types of Hyers–Ulam stability. In the last section an example concerning the proposed problem is presented.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s12346-022-00624-8</doi><orcidid>https://orcid.org/0000-0002-2067-6943</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1575-5460 |
ispartof | Qualitative theory of dynamical systems, 2022-09, Vol.21 (3), Article 92 |
issn | 1575-5460 1662-3592 |
language | eng |
recordid | cdi_proquest_journals_2684169657 |
source | SpringerNature Journals |
subjects | Boundary conditions Difference and Functional Equations Differential equations Dynamical Systems and Ergodic Theory Eigenvalues Fractional calculus Laplace transforms Mathematics Mathematics and Statistics Operators (mathematics) Stability Uniqueness |
title | Hyers–Ulam Stability for a Coupled System of Fractional Differential Equation With p-Laplacian Operator Having Integral Boundary Conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T23%3A54%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyers%E2%80%93Ulam%20Stability%20for%20a%20Coupled%20System%20of%20Fractional%20Differential%20Equation%20With%20p-Laplacian%20Operator%20Having%20Integral%20Boundary%20Conditions&rft.jtitle=Qualitative%20theory%20of%20dynamical%20systems&rft.au=Waheed,%20Hira&rft.date=2022-09-01&rft.volume=21&rft.issue=3&rft.artnum=92&rft.issn=1575-5460&rft.eissn=1662-3592&rft_id=info:doi/10.1007/s12346-022-00624-8&rft_dat=%3Cproquest_cross%3E2684169657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2684169657&rft_id=info:pmid/&rfr_iscdi=true |