Hyers–Ulam Stability for a Coupled System of Fractional Differential Equation With p-Laplacian Operator Having Integral Boundary Conditions

In this article we explore the existence, uniqueness, and stability for a coupled symmetric system of fractional differential equation with nonlinear p -Laplacian operator. Existence and uniqueness results are obtained by using the matrix eigenvalue method. Further, we study different types of Hyers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Qualitative theory of dynamical systems 2022-09, Vol.21 (3), Article 92
Hauptverfasser: Waheed, Hira, Zada, Akbar, Rizwan, Rizwan, Popa, Ioan-Lucian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Qualitative theory of dynamical systems
container_volume 21
creator Waheed, Hira
Zada, Akbar
Rizwan, Rizwan
Popa, Ioan-Lucian
description In this article we explore the existence, uniqueness, and stability for a coupled symmetric system of fractional differential equation with nonlinear p -Laplacian operator. Existence and uniqueness results are obtained by using the matrix eigenvalue method. Further, we study different types of Hyers–Ulam stability. In the last section an example concerning the proposed problem is presented.
doi_str_mv 10.1007/s12346-022-00624-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2684169657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2684169657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-a0a6f50ed51538a1abbae1be5960383110318a5c697046274c6c26049a73b6973</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhSMEEqVwAVaWWBv8EzvJEkpLK1XqolQsrUnqFFdpktoOUndcgBU35CQ4FIkdq_GM3vfG86LompJbSkhy5yjjscSEMUyIZDFOT6IBlZJhLjJ2Gt4iEVjEkpxHF85te1HC2SD6mB60dV_vn6sKdmjpITeV8QdUNhYBGjVdW-k1Wh6c1zvUlGhiofCmqaFCj6YstdW1N6EZ7zvo5-jF-FfU4jm0FRQGarRotQUf7KbwZuoNmtVeb2xAHpquXoM9hC312vSwu4zOSqicvvqtw2g1GT-Ppni-eJqN7ue4YHHmMRCQpSB6LajgKVDIc9A01yKThKecUsJpCqKQWULicGhcyIJJEmeQ8DwM-TC6Ofq2ttl32nm1bTobjnKKyTSmMpOiV7GjqrCNc1aXqrVmF36sKFF97OoYuwqxq5_YVRogfoRcENcbbf-s_6G-AWLkh08</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684169657</pqid></control><display><type>article</type><title>Hyers–Ulam Stability for a Coupled System of Fractional Differential Equation With p-Laplacian Operator Having Integral Boundary Conditions</title><source>SpringerNature Journals</source><creator>Waheed, Hira ; Zada, Akbar ; Rizwan, Rizwan ; Popa, Ioan-Lucian</creator><creatorcontrib>Waheed, Hira ; Zada, Akbar ; Rizwan, Rizwan ; Popa, Ioan-Lucian</creatorcontrib><description>In this article we explore the existence, uniqueness, and stability for a coupled symmetric system of fractional differential equation with nonlinear p -Laplacian operator. Existence and uniqueness results are obtained by using the matrix eigenvalue method. Further, we study different types of Hyers–Ulam stability. In the last section an example concerning the proposed problem is presented.</description><identifier>ISSN: 1575-5460</identifier><identifier>EISSN: 1662-3592</identifier><identifier>DOI: 10.1007/s12346-022-00624-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Boundary conditions ; Difference and Functional Equations ; Differential equations ; Dynamical Systems and Ergodic Theory ; Eigenvalues ; Fractional calculus ; Laplace transforms ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Stability ; Uniqueness</subject><ispartof>Qualitative theory of dynamical systems, 2022-09, Vol.21 (3), Article 92</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-a0a6f50ed51538a1abbae1be5960383110318a5c697046274c6c26049a73b6973</citedby><cites>FETCH-LOGICAL-c249t-a0a6f50ed51538a1abbae1be5960383110318a5c697046274c6c26049a73b6973</cites><orcidid>0000-0002-2067-6943</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12346-022-00624-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12346-022-00624-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Waheed, Hira</creatorcontrib><creatorcontrib>Zada, Akbar</creatorcontrib><creatorcontrib>Rizwan, Rizwan</creatorcontrib><creatorcontrib>Popa, Ioan-Lucian</creatorcontrib><title>Hyers–Ulam Stability for a Coupled System of Fractional Differential Equation With p-Laplacian Operator Having Integral Boundary Conditions</title><title>Qualitative theory of dynamical systems</title><addtitle>Qual. Theory Dyn. Syst</addtitle><description>In this article we explore the existence, uniqueness, and stability for a coupled symmetric system of fractional differential equation with nonlinear p -Laplacian operator. Existence and uniqueness results are obtained by using the matrix eigenvalue method. Further, we study different types of Hyers–Ulam stability. In the last section an example concerning the proposed problem is presented.</description><subject>Boundary conditions</subject><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Eigenvalues</subject><subject>Fractional calculus</subject><subject>Laplace transforms</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Stability</subject><subject>Uniqueness</subject><issn>1575-5460</issn><issn>1662-3592</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhSMEEqVwAVaWWBv8EzvJEkpLK1XqolQsrUnqFFdpktoOUndcgBU35CQ4FIkdq_GM3vfG86LompJbSkhy5yjjscSEMUyIZDFOT6IBlZJhLjJ2Gt4iEVjEkpxHF85te1HC2SD6mB60dV_vn6sKdmjpITeV8QdUNhYBGjVdW-k1Wh6c1zvUlGhiofCmqaFCj6YstdW1N6EZ7zvo5-jF-FfU4jm0FRQGarRotQUf7KbwZuoNmtVeb2xAHpquXoM9hC312vSwu4zOSqicvvqtw2g1GT-Ppni-eJqN7ue4YHHmMRCQpSB6LajgKVDIc9A01yKThKecUsJpCqKQWULicGhcyIJJEmeQ8DwM-TC6Ofq2ttl32nm1bTobjnKKyTSmMpOiV7GjqrCNc1aXqrVmF36sKFF97OoYuwqxq5_YVRogfoRcENcbbf-s_6G-AWLkh08</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Waheed, Hira</creator><creator>Zada, Akbar</creator><creator>Rizwan, Rizwan</creator><creator>Popa, Ioan-Lucian</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2067-6943</orcidid></search><sort><creationdate>20220901</creationdate><title>Hyers–Ulam Stability for a Coupled System of Fractional Differential Equation With p-Laplacian Operator Having Integral Boundary Conditions</title><author>Waheed, Hira ; Zada, Akbar ; Rizwan, Rizwan ; Popa, Ioan-Lucian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-a0a6f50ed51538a1abbae1be5960383110318a5c697046274c6c26049a73b6973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary conditions</topic><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Eigenvalues</topic><topic>Fractional calculus</topic><topic>Laplace transforms</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Stability</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waheed, Hira</creatorcontrib><creatorcontrib>Zada, Akbar</creatorcontrib><creatorcontrib>Rizwan, Rizwan</creatorcontrib><creatorcontrib>Popa, Ioan-Lucian</creatorcontrib><collection>CrossRef</collection><jtitle>Qualitative theory of dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waheed, Hira</au><au>Zada, Akbar</au><au>Rizwan, Rizwan</au><au>Popa, Ioan-Lucian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyers–Ulam Stability for a Coupled System of Fractional Differential Equation With p-Laplacian Operator Having Integral Boundary Conditions</atitle><jtitle>Qualitative theory of dynamical systems</jtitle><stitle>Qual. Theory Dyn. Syst</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>21</volume><issue>3</issue><artnum>92</artnum><issn>1575-5460</issn><eissn>1662-3592</eissn><abstract>In this article we explore the existence, uniqueness, and stability for a coupled symmetric system of fractional differential equation with nonlinear p -Laplacian operator. Existence and uniqueness results are obtained by using the matrix eigenvalue method. Further, we study different types of Hyers–Ulam stability. In the last section an example concerning the proposed problem is presented.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s12346-022-00624-8</doi><orcidid>https://orcid.org/0000-0002-2067-6943</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1575-5460
ispartof Qualitative theory of dynamical systems, 2022-09, Vol.21 (3), Article 92
issn 1575-5460
1662-3592
language eng
recordid cdi_proquest_journals_2684169657
source SpringerNature Journals
subjects Boundary conditions
Difference and Functional Equations
Differential equations
Dynamical Systems and Ergodic Theory
Eigenvalues
Fractional calculus
Laplace transforms
Mathematics
Mathematics and Statistics
Operators (mathematics)
Stability
Uniqueness
title Hyers–Ulam Stability for a Coupled System of Fractional Differential Equation With p-Laplacian Operator Having Integral Boundary Conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T23%3A54%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyers%E2%80%93Ulam%20Stability%20for%20a%20Coupled%20System%20of%20Fractional%20Differential%20Equation%20With%20p-Laplacian%20Operator%20Having%20Integral%20Boundary%20Conditions&rft.jtitle=Qualitative%20theory%20of%20dynamical%20systems&rft.au=Waheed,%20Hira&rft.date=2022-09-01&rft.volume=21&rft.issue=3&rft.artnum=92&rft.issn=1575-5460&rft.eissn=1662-3592&rft_id=info:doi/10.1007/s12346-022-00624-8&rft_dat=%3Cproquest_cross%3E2684169657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2684169657&rft_id=info:pmid/&rfr_iscdi=true