UAV-Aided Multiuser Mobile Edge Computing Networks with Energy Harvesting

This article studies a mobile edge computing (MEC) with one edge node (EN), where multiple unmanned aerial vehicles (UAVs) act as users which have some heavy tasks. As the users generally have limitations in both calculating and power supply, the EN can help calculate the tasks and meanwhile supply...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless communications and mobile computing 2022-06, Vol.2022, p.1-10
Hauptverfasser: Wang, Changyu, Yu, Weili, Zhu, Fusheng, Ou, Jiangtao, Fan, Chengyuan, Ou, Jianghong, Fan, Dahua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title Wireless communications and mobile computing
container_volume 2022
creator Wang, Changyu
Yu, Weili
Zhu, Fusheng
Ou, Jiangtao
Fan, Chengyuan
Ou, Jianghong
Fan, Dahua
description This article studies a mobile edge computing (MEC) with one edge node (EN), where multiple unmanned aerial vehicles (UAVs) act as users which have some heavy tasks. As the users generally have limitations in both calculating and power supply, the EN can help calculate the tasks and meanwhile supply the power to the users through energy harvesting. We optimize the system by proposing a joint strategy to unpacking and energy harvesting. Specifically, a deep reinforcement learning (DRL) algorithm is implemented to provide a solution to the unpacking, while several analytical solutions are given to the power allocation of energy harvesting among multiple users. In particular, criterion I is the equivalent power allocation, criterion II is designed through equal data rate, while criterion III is based on the equivalent transmission delay. We finally give some results to verify the joint strategy for the UAV-aided multiuser MEC system with energy harvesting.
doi_str_mv 10.1155/2022/6723403
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2683803505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2683803505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-c42144d26c546e8ac961f01116138c242e02b500575c497739fb0de341070b963</originalsourceid><addsrcrecordid>eNp9kE1PwkAURSdGExHd-QMmcamVN9_tkhAUEtCNuJ200ykMQoszrYR_b5sSl67uS-7Ju8lB6J7AMyFCjChQOpKKMg7sAg2IYBDFUqnLv1sm1-gmhC0AMKBkgOar8Wc0drnN8bLZ1a4J1uNllbmdxdN8bfGk2h-a2pVr_GbrY-W_Aj66eoOnpfXrE56l_seGrr9FV0W6C_bunEO0epl-TGbR4v11PhkvIsOYqiPDKeE8p9IILm2cmkSSAgghkrDYUE4t0EwACCUMT5RiSZFBbhknoCBLJBuih_7vwVffTbutt1Xjy3ZSUxmzGJgA0VJPPWV8FYK3hT54t0_9SRPQnSzdydJnWS3-2OMbV-bp0f1P_wKdQmYt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2683803505</pqid></control><display><type>article</type><title>UAV-Aided Multiuser Mobile Edge Computing Networks with Energy Harvesting</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Wang, Changyu ; Yu, Weili ; Zhu, Fusheng ; Ou, Jiangtao ; Fan, Chengyuan ; Ou, Jianghong ; Fan, Dahua</creator><contributor>Li, Xingwang</contributor><creatorcontrib>Wang, Changyu ; Yu, Weili ; Zhu, Fusheng ; Ou, Jiangtao ; Fan, Chengyuan ; Ou, Jianghong ; Fan, Dahua ; Li, Xingwang</creatorcontrib><description>This article studies a mobile edge computing (MEC) with one edge node (EN), where multiple unmanned aerial vehicles (UAVs) act as users which have some heavy tasks. As the users generally have limitations in both calculating and power supply, the EN can help calculate the tasks and meanwhile supply the power to the users through energy harvesting. We optimize the system by proposing a joint strategy to unpacking and energy harvesting. Specifically, a deep reinforcement learning (DRL) algorithm is implemented to provide a solution to the unpacking, while several analytical solutions are given to the power allocation of energy harvesting among multiple users. In particular, criterion I is the equivalent power allocation, criterion II is designed through equal data rate, while criterion III is based on the equivalent transmission delay. We finally give some results to verify the joint strategy for the UAV-aided multiuser MEC system with energy harvesting.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2022/6723403</identifier><language>eng</language><publisher>Oxford: Hindawi</publisher><subject>Algorithms ; Cloud computing ; Communication ; Criteria ; Edge computing ; Energy ; Energy harvesting ; Equivalence ; Exact solutions ; Internet of Things ; Machine learning ; Mobile computing ; Optimization ; Unmanned aerial vehicles</subject><ispartof>Wireless communications and mobile computing, 2022-06, Vol.2022, p.1-10</ispartof><rights>Copyright © 2022 Changyu Wang et al.</rights><rights>Copyright © 2022 Changyu Wang et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-c42144d26c546e8ac961f01116138c242e02b500575c497739fb0de341070b963</citedby><cites>FETCH-LOGICAL-c337t-c42144d26c546e8ac961f01116138c242e02b500575c497739fb0de341070b963</cites><orcidid>0000-0003-4941-7504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Li, Xingwang</contributor><creatorcontrib>Wang, Changyu</creatorcontrib><creatorcontrib>Yu, Weili</creatorcontrib><creatorcontrib>Zhu, Fusheng</creatorcontrib><creatorcontrib>Ou, Jiangtao</creatorcontrib><creatorcontrib>Fan, Chengyuan</creatorcontrib><creatorcontrib>Ou, Jianghong</creatorcontrib><creatorcontrib>Fan, Dahua</creatorcontrib><title>UAV-Aided Multiuser Mobile Edge Computing Networks with Energy Harvesting</title><title>Wireless communications and mobile computing</title><description>This article studies a mobile edge computing (MEC) with one edge node (EN), where multiple unmanned aerial vehicles (UAVs) act as users which have some heavy tasks. As the users generally have limitations in both calculating and power supply, the EN can help calculate the tasks and meanwhile supply the power to the users through energy harvesting. We optimize the system by proposing a joint strategy to unpacking and energy harvesting. Specifically, a deep reinforcement learning (DRL) algorithm is implemented to provide a solution to the unpacking, while several analytical solutions are given to the power allocation of energy harvesting among multiple users. In particular, criterion I is the equivalent power allocation, criterion II is designed through equal data rate, while criterion III is based on the equivalent transmission delay. We finally give some results to verify the joint strategy for the UAV-aided multiuser MEC system with energy harvesting.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Communication</subject><subject>Criteria</subject><subject>Edge computing</subject><subject>Energy</subject><subject>Energy harvesting</subject><subject>Equivalence</subject><subject>Exact solutions</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Mobile computing</subject><subject>Optimization</subject><subject>Unmanned aerial vehicles</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kE1PwkAURSdGExHd-QMmcamVN9_tkhAUEtCNuJ200ykMQoszrYR_b5sSl67uS-7Ju8lB6J7AMyFCjChQOpKKMg7sAg2IYBDFUqnLv1sm1-gmhC0AMKBkgOar8Wc0drnN8bLZ1a4J1uNllbmdxdN8bfGk2h-a2pVr_GbrY-W_Aj66eoOnpfXrE56l_seGrr9FV0W6C_bunEO0epl-TGbR4v11PhkvIsOYqiPDKeE8p9IILm2cmkSSAgghkrDYUE4t0EwACCUMT5RiSZFBbhknoCBLJBuih_7vwVffTbutt1Xjy3ZSUxmzGJgA0VJPPWV8FYK3hT54t0_9SRPQnSzdydJnWS3-2OMbV-bp0f1P_wKdQmYt</recordid><startdate>20220621</startdate><enddate>20220621</enddate><creator>Wang, Changyu</creator><creator>Yu, Weili</creator><creator>Zhu, Fusheng</creator><creator>Ou, Jiangtao</creator><creator>Fan, Chengyuan</creator><creator>Ou, Jianghong</creator><creator>Fan, Dahua</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4941-7504</orcidid></search><sort><creationdate>20220621</creationdate><title>UAV-Aided Multiuser Mobile Edge Computing Networks with Energy Harvesting</title><author>Wang, Changyu ; Yu, Weili ; Zhu, Fusheng ; Ou, Jiangtao ; Fan, Chengyuan ; Ou, Jianghong ; Fan, Dahua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-c42144d26c546e8ac961f01116138c242e02b500575c497739fb0de341070b963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Communication</topic><topic>Criteria</topic><topic>Edge computing</topic><topic>Energy</topic><topic>Energy harvesting</topic><topic>Equivalence</topic><topic>Exact solutions</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Mobile computing</topic><topic>Optimization</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Changyu</creatorcontrib><creatorcontrib>Yu, Weili</creatorcontrib><creatorcontrib>Zhu, Fusheng</creatorcontrib><creatorcontrib>Ou, Jiangtao</creatorcontrib><creatorcontrib>Fan, Chengyuan</creatorcontrib><creatorcontrib>Ou, Jianghong</creatorcontrib><creatorcontrib>Fan, Dahua</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Changyu</au><au>Yu, Weili</au><au>Zhu, Fusheng</au><au>Ou, Jiangtao</au><au>Fan, Chengyuan</au><au>Ou, Jianghong</au><au>Fan, Dahua</au><au>Li, Xingwang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UAV-Aided Multiuser Mobile Edge Computing Networks with Energy Harvesting</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2022-06-21</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>This article studies a mobile edge computing (MEC) with one edge node (EN), where multiple unmanned aerial vehicles (UAVs) act as users which have some heavy tasks. As the users generally have limitations in both calculating and power supply, the EN can help calculate the tasks and meanwhile supply the power to the users through energy harvesting. We optimize the system by proposing a joint strategy to unpacking and energy harvesting. Specifically, a deep reinforcement learning (DRL) algorithm is implemented to provide a solution to the unpacking, while several analytical solutions are given to the power allocation of energy harvesting among multiple users. In particular, criterion I is the equivalent power allocation, criterion II is designed through equal data rate, while criterion III is based on the equivalent transmission delay. We finally give some results to verify the joint strategy for the UAV-aided multiuser MEC system with energy harvesting.</abstract><cop>Oxford</cop><pub>Hindawi</pub><doi>10.1155/2022/6723403</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4941-7504</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-8669
ispartof Wireless communications and mobile computing, 2022-06, Vol.2022, p.1-10
issn 1530-8669
1530-8677
language eng
recordid cdi_proquest_journals_2683803505
source Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Algorithms
Cloud computing
Communication
Criteria
Edge computing
Energy
Energy harvesting
Equivalence
Exact solutions
Internet of Things
Machine learning
Mobile computing
Optimization
Unmanned aerial vehicles
title UAV-Aided Multiuser Mobile Edge Computing Networks with Energy Harvesting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A33%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UAV-Aided%20Multiuser%20Mobile%20Edge%20Computing%20Networks%20with%20Energy%20Harvesting&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Wang,%20Changyu&rft.date=2022-06-21&rft.volume=2022&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2022/6723403&rft_dat=%3Cproquest_cross%3E2683803505%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2683803505&rft_id=info:pmid/&rfr_iscdi=true