Short-Term Stock Price Prediction Based on CAE-LSTM Method
Artificial intelligence methods are important tools for mining information for forecasting in the stock market. Most of the literature related to short-term stock price prediction focuses on the technical data, but in the real market, many individual investors make investment decisions more from sto...
Gespeichert in:
Veröffentlicht in: | Wireless communications and mobile computing 2022-06, Vol.2022, p.1-7 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Wireless communications and mobile computing |
container_volume | 2022 |
creator | Liu, Hui Qi, Liangchen Sun, Mingsong |
description | Artificial intelligence methods are important tools for mining information for forecasting in the stock market. Most of the literature related to short-term stock price prediction focuses on the technical data, but in the real market, many individual investors make investment decisions more from stock price shape characteristics rather than specific stock price values. Compared with traditional measurement methods, deep neural networks perform better in processing high-dimensional complex data such as images. This paper proposes a model that combines CAE (convolutional autoencoder) and LSTM (long short-term memory) neural network, uses CAE to extract stock price image feature data, and combines technical data to predict short-term stock prices. The results show that the CAE-LSTM model, based on stock price image morphological feature data and technical data, performs well in short-term stock price prediction and has good generalization ability. The root mean square error of the CAE-LSTM model decreased by about 4% from that of LSTM. CAE-LSTM models have better predictive power than LSTM models that only use technical indicator data as valid inputs. |
doi_str_mv | 10.1155/2022/4809632 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2683803454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2683803454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-e9a399485b386bd77723e21fa0458ea2d3fceb62521626ad94d34165803b8a033</originalsourceid><addsrcrecordid>eNp90M9LwzAUB_AgCs7pzT-g4FHrkrwkTb3NMn9Ah0LrOaRNSjtdM5OO4X9vx4ZHL-99Dx_egy9C1wTfE8L5jGJKZ0ziVAA9QRPCAcdSJMnpXxbpOboIYYUxBkzJBD0UrfNDXFq_jorB1Z_Ru-9qO05runroXB896mBNNIZsvojzolxGSzu0zlyis0Z_BXt13FP08bQos5c4f3t-zeZ5XAMkQ2xTDWnKJK9AisokSULBUtJozLi0mhpoalsJyikRVGiTMgOMCC4xVFJjgCm6OdzdePe9tWFQK7f1_fhSUSFhdIyzUd0dVO1dCN42auO7tfY_imC1b0ft21HHdkZ-e-Bt1xu96_7Xv-RrYEE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2683803454</pqid></control><display><type>article</type><title>Short-Term Stock Price Prediction Based on CAE-LSTM Method</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Liu, Hui ; Qi, Liangchen ; Sun, Mingsong</creator><contributor>Qu, Zhiguo</contributor><creatorcontrib>Liu, Hui ; Qi, Liangchen ; Sun, Mingsong ; Qu, Zhiguo</creatorcontrib><description>Artificial intelligence methods are important tools for mining information for forecasting in the stock market. Most of the literature related to short-term stock price prediction focuses on the technical data, but in the real market, many individual investors make investment decisions more from stock price shape characteristics rather than specific stock price values. Compared with traditional measurement methods, deep neural networks perform better in processing high-dimensional complex data such as images. This paper proposes a model that combines CAE (convolutional autoencoder) and LSTM (long short-term memory) neural network, uses CAE to extract stock price image feature data, and combines technical data to predict short-term stock prices. The results show that the CAE-LSTM model, based on stock price image morphological feature data and technical data, performs well in short-term stock price prediction and has good generalization ability. The root mean square error of the CAE-LSTM model decreased by about 4% from that of LSTM. CAE-LSTM models have better predictive power than LSTM models that only use technical indicator data as valid inputs.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2022/4809632</identifier><language>eng</language><publisher>Oxford: Hindawi</publisher><subject>Accuracy ; Artificial intelligence ; Artificial neural networks ; Economic forecasting ; Feature extraction ; Forecasting ; Foreign exchange rates ; Institutional investments ; Measurement methods ; Methods ; Morphology ; Neural networks ; Prices ; Securities markets ; Stock exchanges ; Support vector machines ; Time series</subject><ispartof>Wireless communications and mobile computing, 2022-06, Vol.2022, p.1-7</ispartof><rights>Copyright © 2022 Hui Liu et al.</rights><rights>Copyright © 2022 Hui Liu et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-e9a399485b386bd77723e21fa0458ea2d3fceb62521626ad94d34165803b8a033</citedby><cites>FETCH-LOGICAL-c337t-e9a399485b386bd77723e21fa0458ea2d3fceb62521626ad94d34165803b8a033</cites><orcidid>0000-0002-6489-8062 ; 0000-0003-1005-3379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Qu, Zhiguo</contributor><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Qi, Liangchen</creatorcontrib><creatorcontrib>Sun, Mingsong</creatorcontrib><title>Short-Term Stock Price Prediction Based on CAE-LSTM Method</title><title>Wireless communications and mobile computing</title><description>Artificial intelligence methods are important tools for mining information for forecasting in the stock market. Most of the literature related to short-term stock price prediction focuses on the technical data, but in the real market, many individual investors make investment decisions more from stock price shape characteristics rather than specific stock price values. Compared with traditional measurement methods, deep neural networks perform better in processing high-dimensional complex data such as images. This paper proposes a model that combines CAE (convolutional autoencoder) and LSTM (long short-term memory) neural network, uses CAE to extract stock price image feature data, and combines technical data to predict short-term stock prices. The results show that the CAE-LSTM model, based on stock price image morphological feature data and technical data, performs well in short-term stock price prediction and has good generalization ability. The root mean square error of the CAE-LSTM model decreased by about 4% from that of LSTM. CAE-LSTM models have better predictive power than LSTM models that only use technical indicator data as valid inputs.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Economic forecasting</subject><subject>Feature extraction</subject><subject>Forecasting</subject><subject>Foreign exchange rates</subject><subject>Institutional investments</subject><subject>Measurement methods</subject><subject>Methods</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>Prices</subject><subject>Securities markets</subject><subject>Stock exchanges</subject><subject>Support vector machines</subject><subject>Time series</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp90M9LwzAUB_AgCs7pzT-g4FHrkrwkTb3NMn9Ah0LrOaRNSjtdM5OO4X9vx4ZHL-99Dx_egy9C1wTfE8L5jGJKZ0ziVAA9QRPCAcdSJMnpXxbpOboIYYUxBkzJBD0UrfNDXFq_jorB1Z_Ru-9qO05runroXB896mBNNIZsvojzolxGSzu0zlyis0Z_BXt13FP08bQos5c4f3t-zeZ5XAMkQ2xTDWnKJK9AisokSULBUtJozLi0mhpoalsJyikRVGiTMgOMCC4xVFJjgCm6OdzdePe9tWFQK7f1_fhSUSFhdIyzUd0dVO1dCN42auO7tfY_imC1b0ft21HHdkZ-e-Bt1xu96_7Xv-RrYEE</recordid><startdate>20220622</startdate><enddate>20220622</enddate><creator>Liu, Hui</creator><creator>Qi, Liangchen</creator><creator>Sun, Mingsong</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6489-8062</orcidid><orcidid>https://orcid.org/0000-0003-1005-3379</orcidid></search><sort><creationdate>20220622</creationdate><title>Short-Term Stock Price Prediction Based on CAE-LSTM Method</title><author>Liu, Hui ; Qi, Liangchen ; Sun, Mingsong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-e9a399485b386bd77723e21fa0458ea2d3fceb62521626ad94d34165803b8a033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Economic forecasting</topic><topic>Feature extraction</topic><topic>Forecasting</topic><topic>Foreign exchange rates</topic><topic>Institutional investments</topic><topic>Measurement methods</topic><topic>Methods</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>Prices</topic><topic>Securities markets</topic><topic>Stock exchanges</topic><topic>Support vector machines</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Qi, Liangchen</creatorcontrib><creatorcontrib>Sun, Mingsong</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Hui</au><au>Qi, Liangchen</au><au>Sun, Mingsong</au><au>Qu, Zhiguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short-Term Stock Price Prediction Based on CAE-LSTM Method</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2022-06-22</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>Artificial intelligence methods are important tools for mining information for forecasting in the stock market. Most of the literature related to short-term stock price prediction focuses on the technical data, but in the real market, many individual investors make investment decisions more from stock price shape characteristics rather than specific stock price values. Compared with traditional measurement methods, deep neural networks perform better in processing high-dimensional complex data such as images. This paper proposes a model that combines CAE (convolutional autoencoder) and LSTM (long short-term memory) neural network, uses CAE to extract stock price image feature data, and combines technical data to predict short-term stock prices. The results show that the CAE-LSTM model, based on stock price image morphological feature data and technical data, performs well in short-term stock price prediction and has good generalization ability. The root mean square error of the CAE-LSTM model decreased by about 4% from that of LSTM. CAE-LSTM models have better predictive power than LSTM models that only use technical indicator data as valid inputs.</abstract><cop>Oxford</cop><pub>Hindawi</pub><doi>10.1155/2022/4809632</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6489-8062</orcidid><orcidid>https://orcid.org/0000-0003-1005-3379</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-8669 |
ispartof | Wireless communications and mobile computing, 2022-06, Vol.2022, p.1-7 |
issn | 1530-8669 1530-8677 |
language | eng |
recordid | cdi_proquest_journals_2683803454 |
source | Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Accuracy Artificial intelligence Artificial neural networks Economic forecasting Feature extraction Forecasting Foreign exchange rates Institutional investments Measurement methods Methods Morphology Neural networks Prices Securities markets Stock exchanges Support vector machines Time series |
title | Short-Term Stock Price Prediction Based on CAE-LSTM Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A45%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short-Term%20Stock%20Price%20Prediction%20Based%20on%20CAE-LSTM%20Method&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Liu,%20Hui&rft.date=2022-06-22&rft.volume=2022&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2022/4809632&rft_dat=%3Cproquest_cross%3E2683803454%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2683803454&rft_id=info:pmid/&rfr_iscdi=true |