Short-Term Stock Price Prediction Based on CAE-LSTM Method

Artificial intelligence methods are important tools for mining information for forecasting in the stock market. Most of the literature related to short-term stock price prediction focuses on the technical data, but in the real market, many individual investors make investment decisions more from sto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless communications and mobile computing 2022-06, Vol.2022, p.1-7
Hauptverfasser: Liu, Hui, Qi, Liangchen, Sun, Mingsong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue
container_start_page 1
container_title Wireless communications and mobile computing
container_volume 2022
creator Liu, Hui
Qi, Liangchen
Sun, Mingsong
description Artificial intelligence methods are important tools for mining information for forecasting in the stock market. Most of the literature related to short-term stock price prediction focuses on the technical data, but in the real market, many individual investors make investment decisions more from stock price shape characteristics rather than specific stock price values. Compared with traditional measurement methods, deep neural networks perform better in processing high-dimensional complex data such as images. This paper proposes a model that combines CAE (convolutional autoencoder) and LSTM (long short-term memory) neural network, uses CAE to extract stock price image feature data, and combines technical data to predict short-term stock prices. The results show that the CAE-LSTM model, based on stock price image morphological feature data and technical data, performs well in short-term stock price prediction and has good generalization ability. The root mean square error of the CAE-LSTM model decreased by about 4% from that of LSTM. CAE-LSTM models have better predictive power than LSTM models that only use technical indicator data as valid inputs.
doi_str_mv 10.1155/2022/4809632
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2683803454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2683803454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-e9a399485b386bd77723e21fa0458ea2d3fceb62521626ad94d34165803b8a033</originalsourceid><addsrcrecordid>eNp90M9LwzAUB_AgCs7pzT-g4FHrkrwkTb3NMn9Ah0LrOaRNSjtdM5OO4X9vx4ZHL-99Dx_egy9C1wTfE8L5jGJKZ0ziVAA9QRPCAcdSJMnpXxbpOboIYYUxBkzJBD0UrfNDXFq_jorB1Z_Ru-9qO05runroXB896mBNNIZsvojzolxGSzu0zlyis0Z_BXt13FP08bQos5c4f3t-zeZ5XAMkQ2xTDWnKJK9AisokSULBUtJozLi0mhpoalsJyikRVGiTMgOMCC4xVFJjgCm6OdzdePe9tWFQK7f1_fhSUSFhdIyzUd0dVO1dCN42auO7tfY_imC1b0ft21HHdkZ-e-Bt1xu96_7Xv-RrYEE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2683803454</pqid></control><display><type>article</type><title>Short-Term Stock Price Prediction Based on CAE-LSTM Method</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Liu, Hui ; Qi, Liangchen ; Sun, Mingsong</creator><contributor>Qu, Zhiguo</contributor><creatorcontrib>Liu, Hui ; Qi, Liangchen ; Sun, Mingsong ; Qu, Zhiguo</creatorcontrib><description>Artificial intelligence methods are important tools for mining information for forecasting in the stock market. Most of the literature related to short-term stock price prediction focuses on the technical data, but in the real market, many individual investors make investment decisions more from stock price shape characteristics rather than specific stock price values. Compared with traditional measurement methods, deep neural networks perform better in processing high-dimensional complex data such as images. This paper proposes a model that combines CAE (convolutional autoencoder) and LSTM (long short-term memory) neural network, uses CAE to extract stock price image feature data, and combines technical data to predict short-term stock prices. The results show that the CAE-LSTM model, based on stock price image morphological feature data and technical data, performs well in short-term stock price prediction and has good generalization ability. The root mean square error of the CAE-LSTM model decreased by about 4% from that of LSTM. CAE-LSTM models have better predictive power than LSTM models that only use technical indicator data as valid inputs.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2022/4809632</identifier><language>eng</language><publisher>Oxford: Hindawi</publisher><subject>Accuracy ; Artificial intelligence ; Artificial neural networks ; Economic forecasting ; Feature extraction ; Forecasting ; Foreign exchange rates ; Institutional investments ; Measurement methods ; Methods ; Morphology ; Neural networks ; Prices ; Securities markets ; Stock exchanges ; Support vector machines ; Time series</subject><ispartof>Wireless communications and mobile computing, 2022-06, Vol.2022, p.1-7</ispartof><rights>Copyright © 2022 Hui Liu et al.</rights><rights>Copyright © 2022 Hui Liu et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-e9a399485b386bd77723e21fa0458ea2d3fceb62521626ad94d34165803b8a033</citedby><cites>FETCH-LOGICAL-c337t-e9a399485b386bd77723e21fa0458ea2d3fceb62521626ad94d34165803b8a033</cites><orcidid>0000-0002-6489-8062 ; 0000-0003-1005-3379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Qu, Zhiguo</contributor><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Qi, Liangchen</creatorcontrib><creatorcontrib>Sun, Mingsong</creatorcontrib><title>Short-Term Stock Price Prediction Based on CAE-LSTM Method</title><title>Wireless communications and mobile computing</title><description>Artificial intelligence methods are important tools for mining information for forecasting in the stock market. Most of the literature related to short-term stock price prediction focuses on the technical data, but in the real market, many individual investors make investment decisions more from stock price shape characteristics rather than specific stock price values. Compared with traditional measurement methods, deep neural networks perform better in processing high-dimensional complex data such as images. This paper proposes a model that combines CAE (convolutional autoencoder) and LSTM (long short-term memory) neural network, uses CAE to extract stock price image feature data, and combines technical data to predict short-term stock prices. The results show that the CAE-LSTM model, based on stock price image morphological feature data and technical data, performs well in short-term stock price prediction and has good generalization ability. The root mean square error of the CAE-LSTM model decreased by about 4% from that of LSTM. CAE-LSTM models have better predictive power than LSTM models that only use technical indicator data as valid inputs.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Economic forecasting</subject><subject>Feature extraction</subject><subject>Forecasting</subject><subject>Foreign exchange rates</subject><subject>Institutional investments</subject><subject>Measurement methods</subject><subject>Methods</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>Prices</subject><subject>Securities markets</subject><subject>Stock exchanges</subject><subject>Support vector machines</subject><subject>Time series</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp90M9LwzAUB_AgCs7pzT-g4FHrkrwkTb3NMn9Ah0LrOaRNSjtdM5OO4X9vx4ZHL-99Dx_egy9C1wTfE8L5jGJKZ0ziVAA9QRPCAcdSJMnpXxbpOboIYYUxBkzJBD0UrfNDXFq_jorB1Z_Ru-9qO05runroXB896mBNNIZsvojzolxGSzu0zlyis0Z_BXt13FP08bQos5c4f3t-zeZ5XAMkQ2xTDWnKJK9AisokSULBUtJozLi0mhpoalsJyikRVGiTMgOMCC4xVFJjgCm6OdzdePe9tWFQK7f1_fhSUSFhdIyzUd0dVO1dCN42auO7tfY_imC1b0ft21HHdkZ-e-Bt1xu96_7Xv-RrYEE</recordid><startdate>20220622</startdate><enddate>20220622</enddate><creator>Liu, Hui</creator><creator>Qi, Liangchen</creator><creator>Sun, Mingsong</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6489-8062</orcidid><orcidid>https://orcid.org/0000-0003-1005-3379</orcidid></search><sort><creationdate>20220622</creationdate><title>Short-Term Stock Price Prediction Based on CAE-LSTM Method</title><author>Liu, Hui ; Qi, Liangchen ; Sun, Mingsong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-e9a399485b386bd77723e21fa0458ea2d3fceb62521626ad94d34165803b8a033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Economic forecasting</topic><topic>Feature extraction</topic><topic>Forecasting</topic><topic>Foreign exchange rates</topic><topic>Institutional investments</topic><topic>Measurement methods</topic><topic>Methods</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>Prices</topic><topic>Securities markets</topic><topic>Stock exchanges</topic><topic>Support vector machines</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Qi, Liangchen</creatorcontrib><creatorcontrib>Sun, Mingsong</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Hui</au><au>Qi, Liangchen</au><au>Sun, Mingsong</au><au>Qu, Zhiguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short-Term Stock Price Prediction Based on CAE-LSTM Method</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2022-06-22</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>Artificial intelligence methods are important tools for mining information for forecasting in the stock market. Most of the literature related to short-term stock price prediction focuses on the technical data, but in the real market, many individual investors make investment decisions more from stock price shape characteristics rather than specific stock price values. Compared with traditional measurement methods, deep neural networks perform better in processing high-dimensional complex data such as images. This paper proposes a model that combines CAE (convolutional autoencoder) and LSTM (long short-term memory) neural network, uses CAE to extract stock price image feature data, and combines technical data to predict short-term stock prices. The results show that the CAE-LSTM model, based on stock price image morphological feature data and technical data, performs well in short-term stock price prediction and has good generalization ability. The root mean square error of the CAE-LSTM model decreased by about 4% from that of LSTM. CAE-LSTM models have better predictive power than LSTM models that only use technical indicator data as valid inputs.</abstract><cop>Oxford</cop><pub>Hindawi</pub><doi>10.1155/2022/4809632</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6489-8062</orcidid><orcidid>https://orcid.org/0000-0003-1005-3379</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-8669
ispartof Wireless communications and mobile computing, 2022-06, Vol.2022, p.1-7
issn 1530-8669
1530-8677
language eng
recordid cdi_proquest_journals_2683803454
source Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Accuracy
Artificial intelligence
Artificial neural networks
Economic forecasting
Feature extraction
Forecasting
Foreign exchange rates
Institutional investments
Measurement methods
Methods
Morphology
Neural networks
Prices
Securities markets
Stock exchanges
Support vector machines
Time series
title Short-Term Stock Price Prediction Based on CAE-LSTM Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A45%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short-Term%20Stock%20Price%20Prediction%20Based%20on%20CAE-LSTM%20Method&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Liu,%20Hui&rft.date=2022-06-22&rft.volume=2022&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2022/4809632&rft_dat=%3Cproquest_cross%3E2683803454%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2683803454&rft_id=info:pmid/&rfr_iscdi=true