Three-Way Group Decisions with Incomplete Spherical Fuzzy Information for Treating Parkinson’s Disease Using IoMT Devices

As Internet of Things (IoT) is extensively employed in diverse realistic areas, it is vital to effectively and timely analyze the data collected by IoT devices. To cope with this problem, by integrating adjustable MG SF probabilistic rough sets (PRSs) with the TODIM (an acronym in Portuguese of inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless communications and mobile computing 2022-06, Vol.2022, p.1-13
Hauptverfasser: Zhang, Chao, Zhang, Jingjing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 1
container_title Wireless communications and mobile computing
container_volume 2022
creator Zhang, Chao
Zhang, Jingjing
description As Internet of Things (IoT) is extensively employed in diverse realistic areas, it is vital to effectively and timely analyze the data collected by IoT devices. To cope with this problem, by integrating adjustable MG SF probabilistic rough sets (PRSs) with the TODIM (an acronym in Portuguese of interactive and multi-criteria decision-making) method, this paper explores a three-way multi-attribute group decision-making (MAGDM) approach in the context of multigranulation (MG) spherical fuzzy (SF) incomplete information systems (IISs) and further applies the presented method to the analysis of leg muscle data obtained from Internet of Medical Things (IoMT) devices for Parkinson’s patients. First, the concept of MG SF IISs is established, and the completion method is provided. Then, adjustable MG SF PRSs are proposed for information fusion. Afterwards, considering the bounded rationality of decision-makers (DMs), a new three-way MAGDM method is designed by fusing adjustable MG SF PRSs with the TODIM method. Finally, in the context of IoMT-based detecting abnormal knee joints in Parkinson’s patients, the applicability and validity of the presented method are eventually verified.
doi_str_mv 10.1155/2022/9642617
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2683803078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2683803078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-18b363a0e2e81ac831feafa7958692767c3501cd1d176a956150e0ea765eaacf3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRiMEEqWw4wCWWEKo7eCfLFGhpVIRSKRiGRl3QlzaONgJVcuGa3A9ToKrVixZzTf6nmakF0WnBF8SwliPYkp7Kb-inIi9qENYgmPJhdj_yzw9jI68n2GME0xJJ_rMSgcQP6sVGjrb1ugGtPHGVh4tTVOiUaXtop5DA-ipLsEZreZo0K7Xq1AV1i1UE2AUEsochKV6RY_KvZnK2-rn69ujG-NBeUATv-lG9j4LPz6MBn8cHRRq7uFkN7vRZHCb9e_i8cNw1L8ex5py0cREviQ8URgoSKK0TEgBqlAiZZKnVHChE4aJnpIpEVyljBOGAYMSnIFSuki60dn2bu3sewu-yWe2dVV4mVMuExlUCBmoiy2lnfXeQZHXziyUW-UE5xu9-UZvvtMb8PMtXppqqpbmf_oXWT57mQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2683803078</pqid></control><display><type>article</type><title>Three-Way Group Decisions with Incomplete Spherical Fuzzy Information for Treating Parkinson’s Disease Using IoMT Devices</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Zhang, Chao ; Zhang, Jingjing</creator><contributor>Mukherjee, Amrit</contributor><creatorcontrib>Zhang, Chao ; Zhang, Jingjing ; Mukherjee, Amrit</creatorcontrib><description>As Internet of Things (IoT) is extensively employed in diverse realistic areas, it is vital to effectively and timely analyze the data collected by IoT devices. To cope with this problem, by integrating adjustable MG SF probabilistic rough sets (PRSs) with the TODIM (an acronym in Portuguese of interactive and multi-criteria decision-making) method, this paper explores a three-way multi-attribute group decision-making (MAGDM) approach in the context of multigranulation (MG) spherical fuzzy (SF) incomplete information systems (IISs) and further applies the presented method to the analysis of leg muscle data obtained from Internet of Medical Things (IoMT) devices for Parkinson’s patients. First, the concept of MG SF IISs is established, and the completion method is provided. Then, adjustable MG SF PRSs are proposed for information fusion. Afterwards, considering the bounded rationality of decision-makers (DMs), a new three-way MAGDM method is designed by fusing adjustable MG SF PRSs with the TODIM method. Finally, in the context of IoMT-based detecting abnormal knee joints in Parkinson’s patients, the applicability and validity of the presented method are eventually verified.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2022/9642617</identifier><language>eng</language><publisher>Oxford: Hindawi</publisher><subject>Accuracy ; Context ; Data integration ; Decision making ; Electronic devices ; Fuzzy sets ; Information systems ; Internet of medical things ; Internet of Things ; Methods ; Multiple criterion ; Muscles ; Parkinson's disease ; Personal health ; Rationality ; Sensors</subject><ispartof>Wireless communications and mobile computing, 2022-06, Vol.2022, p.1-13</ispartof><rights>Copyright © 2022 Chao Zhang and Jingjing Zhang.</rights><rights>Copyright © 2022 Chao Zhang and Jingjing Zhang. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-18b363a0e2e81ac831feafa7958692767c3501cd1d176a956150e0ea765eaacf3</citedby><cites>FETCH-LOGICAL-c267t-18b363a0e2e81ac831feafa7958692767c3501cd1d176a956150e0ea765eaacf3</cites><orcidid>0000-0001-6248-9962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Mukherjee, Amrit</contributor><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Zhang, Jingjing</creatorcontrib><title>Three-Way Group Decisions with Incomplete Spherical Fuzzy Information for Treating Parkinson’s Disease Using IoMT Devices</title><title>Wireless communications and mobile computing</title><description>As Internet of Things (IoT) is extensively employed in diverse realistic areas, it is vital to effectively and timely analyze the data collected by IoT devices. To cope with this problem, by integrating adjustable MG SF probabilistic rough sets (PRSs) with the TODIM (an acronym in Portuguese of interactive and multi-criteria decision-making) method, this paper explores a three-way multi-attribute group decision-making (MAGDM) approach in the context of multigranulation (MG) spherical fuzzy (SF) incomplete information systems (IISs) and further applies the presented method to the analysis of leg muscle data obtained from Internet of Medical Things (IoMT) devices for Parkinson’s patients. First, the concept of MG SF IISs is established, and the completion method is provided. Then, adjustable MG SF PRSs are proposed for information fusion. Afterwards, considering the bounded rationality of decision-makers (DMs), a new three-way MAGDM method is designed by fusing adjustable MG SF PRSs with the TODIM method. Finally, in the context of IoMT-based detecting abnormal knee joints in Parkinson’s patients, the applicability and validity of the presented method are eventually verified.</description><subject>Accuracy</subject><subject>Context</subject><subject>Data integration</subject><subject>Decision making</subject><subject>Electronic devices</subject><subject>Fuzzy sets</subject><subject>Information systems</subject><subject>Internet of medical things</subject><subject>Internet of Things</subject><subject>Methods</subject><subject>Multiple criterion</subject><subject>Muscles</subject><subject>Parkinson's disease</subject><subject>Personal health</subject><subject>Rationality</subject><subject>Sensors</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kE1OwzAQRiMEEqWw4wCWWEKo7eCfLFGhpVIRSKRiGRl3QlzaONgJVcuGa3A9ToKrVixZzTf6nmakF0WnBF8SwliPYkp7Kb-inIi9qENYgmPJhdj_yzw9jI68n2GME0xJJ_rMSgcQP6sVGjrb1ugGtPHGVh4tTVOiUaXtop5DA-ipLsEZreZo0K7Xq1AV1i1UE2AUEsochKV6RY_KvZnK2-rn69ujG-NBeUATv-lG9j4LPz6MBn8cHRRq7uFkN7vRZHCb9e_i8cNw1L8ex5py0cREviQ8URgoSKK0TEgBqlAiZZKnVHChE4aJnpIpEVyljBOGAYMSnIFSuki60dn2bu3sewu-yWe2dVV4mVMuExlUCBmoiy2lnfXeQZHXziyUW-UE5xu9-UZvvtMb8PMtXppqqpbmf_oXWT57mQ</recordid><startdate>20220620</startdate><enddate>20220620</enddate><creator>Zhang, Chao</creator><creator>Zhang, Jingjing</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6248-9962</orcidid></search><sort><creationdate>20220620</creationdate><title>Three-Way Group Decisions with Incomplete Spherical Fuzzy Information for Treating Parkinson’s Disease Using IoMT Devices</title><author>Zhang, Chao ; Zhang, Jingjing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-18b363a0e2e81ac831feafa7958692767c3501cd1d176a956150e0ea765eaacf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Context</topic><topic>Data integration</topic><topic>Decision making</topic><topic>Electronic devices</topic><topic>Fuzzy sets</topic><topic>Information systems</topic><topic>Internet of medical things</topic><topic>Internet of Things</topic><topic>Methods</topic><topic>Multiple criterion</topic><topic>Muscles</topic><topic>Parkinson's disease</topic><topic>Personal health</topic><topic>Rationality</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Zhang, Jingjing</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chao</au><au>Zhang, Jingjing</au><au>Mukherjee, Amrit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-Way Group Decisions with Incomplete Spherical Fuzzy Information for Treating Parkinson’s Disease Using IoMT Devices</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2022-06-20</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>As Internet of Things (IoT) is extensively employed in diverse realistic areas, it is vital to effectively and timely analyze the data collected by IoT devices. To cope with this problem, by integrating adjustable MG SF probabilistic rough sets (PRSs) with the TODIM (an acronym in Portuguese of interactive and multi-criteria decision-making) method, this paper explores a three-way multi-attribute group decision-making (MAGDM) approach in the context of multigranulation (MG) spherical fuzzy (SF) incomplete information systems (IISs) and further applies the presented method to the analysis of leg muscle data obtained from Internet of Medical Things (IoMT) devices for Parkinson’s patients. First, the concept of MG SF IISs is established, and the completion method is provided. Then, adjustable MG SF PRSs are proposed for information fusion. Afterwards, considering the bounded rationality of decision-makers (DMs), a new three-way MAGDM method is designed by fusing adjustable MG SF PRSs with the TODIM method. Finally, in the context of IoMT-based detecting abnormal knee joints in Parkinson’s patients, the applicability and validity of the presented method are eventually verified.</abstract><cop>Oxford</cop><pub>Hindawi</pub><doi>10.1155/2022/9642617</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6248-9962</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-8669
ispartof Wireless communications and mobile computing, 2022-06, Vol.2022, p.1-13
issn 1530-8669
1530-8677
language eng
recordid cdi_proquest_journals_2683803078
source Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Accuracy
Context
Data integration
Decision making
Electronic devices
Fuzzy sets
Information systems
Internet of medical things
Internet of Things
Methods
Multiple criterion
Muscles
Parkinson's disease
Personal health
Rationality
Sensors
title Three-Way Group Decisions with Incomplete Spherical Fuzzy Information for Treating Parkinson’s Disease Using IoMT Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A48%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-Way%20Group%20Decisions%20with%20Incomplete%20Spherical%20Fuzzy%20Information%20for%20Treating%20Parkinson%E2%80%99s%20Disease%20Using%20IoMT%20Devices&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Zhang,%20Chao&rft.date=2022-06-20&rft.volume=2022&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2022/9642617&rft_dat=%3Cproquest_cross%3E2683803078%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2683803078&rft_id=info:pmid/&rfr_iscdi=true