Smart Attendance Monitoring Technology for Industry 4.0

Keeping track of employee attendance in academic settings can be a difficult task. It frequently wastes a significant percentage of the category’s productive time when done manually. In this study, the OpenCV open-source image processing library presents an effective Raspberry Pi-based methodology t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanomaterials 2022-01, Vol.2022 (1)
Hauptverfasser: Nadhan, Archana S., Tukkoji, Chetana, Shyamala, Boosi, Dayanand Lal, N., Sanjeev Kumar, A. N., Mohan Gowda, V., Adhoni, Zameer Ahmed, Endaweke, Melaku
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Keeping track of employee attendance in academic settings can be a difficult task. It frequently wastes a significant percentage of the category’s productive time when done manually. In this study, the OpenCV open-source image processing library presents an effective Raspberry Pi-based methodology that reduces product cost and aids in connecting to heterogeneous devices for attendance. When teaching and testing and collecting employee photos and taking attendance, the system delivers a user-friendly interface that maximizes the user experience. Face detection and recognition are done with LBP histograms, and the database is updated with SQLite (a lightweight version of SQL for the Raspberry Pi) rather than MySQL.
ISSN:1687-4110
1687-4129
DOI:10.1155/2022/4899768