Inference on generalized inverted exponential distribution based on record values and inter-record times

Based on record values and inter-record times, this paper develops inference procedures for the estimation of the parameters of generalized inverted exponential distribution (GIED). First, based on inverse and random sampling schemes, we derive the maximum likelihood estimators (MLEs) and associated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Afrika mathematica 2022-09, Vol.33 (3), Article 73
Hauptverfasser: Kumar, Devendra, Wang, Liang, Dey, Sanku, Salehi, Mahdi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Afrika mathematica
container_volume 33
creator Kumar, Devendra
Wang, Liang
Dey, Sanku
Salehi, Mahdi
description Based on record values and inter-record times, this paper develops inference procedures for the estimation of the parameters of generalized inverted exponential distribution (GIED). First, based on inverse and random sampling schemes, we derive the maximum likelihood estimators (MLEs) and associated asymptotic confidence intervals of the unknown parameters. We also show that when the scale parameter is known, the MLE of the shape parameter converges in mean square to the true value. Next, we obtain the Bayes estimators of the unknown parameters of the GIED under inverse sampling scheme using gamma priors for both shape and scale parameters. Besides, highest posterior density intervals are also obtained. Further, the Bayes estimators are obtained based on symmetric (squared error) and asymmetric (linear-exponential) loss functions with the help of Lindley’s approximation method and Metropolis-Hasting algorithm. To illustrate the findings, two data sets are analyzed for illustrative purposes and Monte Carlo simulations are performed to compare the performances of the proposed methods of estimation.
doi_str_mv 10.1007/s13370-022-01011-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2683687496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2683687496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-bec35702b1f1190095dc9cbc9466bd450c4713b5231ea8c577974139a89f09b43</originalsourceid><addsrcrecordid>eNp9UE1PwzAMjRBITLA_wKkS54CTtElzRBMfkyZxgXOUpO7otKUj6abBryejk7jhiy37vWf7EXLD4I4BqPvEhFBAgXMKDBijhzMy4UwDVVLW52SSm5zqEqpLMk1pBTlKyWQlJuRjHlqMGDwWfSiWGDDadfeNTdGFPcYhF3jY9gHD0Nl10XRpiJ3bDV1GO5vyOBcRfR-bYm_XO0yFDUfygJGe-kO3wXRNLlq7Tjg95Svy_vT4Nnuhi9fn-exhQT0HGKhDLyoF3LGW5Q9AV43X3nldSumasgJfKiZcxQVDW_tKKa1KJrStdQvaleKK3I6629h_5nMGs-p3MeSVhstayFqVWmYUH1E-9ilFbM02dhsbvwwDczTVjKaabKr5NdUcMkmMpJTBYYnxT_of1g__y3sj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2683687496</pqid></control><display><type>article</type><title>Inference on generalized inverted exponential distribution based on record values and inter-record times</title><source>SpringerLink Journals</source><creator>Kumar, Devendra ; Wang, Liang ; Dey, Sanku ; Salehi, Mahdi</creator><creatorcontrib>Kumar, Devendra ; Wang, Liang ; Dey, Sanku ; Salehi, Mahdi</creatorcontrib><description>Based on record values and inter-record times, this paper develops inference procedures for the estimation of the parameters of generalized inverted exponential distribution (GIED). First, based on inverse and random sampling schemes, we derive the maximum likelihood estimators (MLEs) and associated asymptotic confidence intervals of the unknown parameters. We also show that when the scale parameter is known, the MLE of the shape parameter converges in mean square to the true value. Next, we obtain the Bayes estimators of the unknown parameters of the GIED under inverse sampling scheme using gamma priors for both shape and scale parameters. Besides, highest posterior density intervals are also obtained. Further, the Bayes estimators are obtained based on symmetric (squared error) and asymmetric (linear-exponential) loss functions with the help of Lindley’s approximation method and Metropolis-Hasting algorithm. To illustrate the findings, two data sets are analyzed for illustrative purposes and Monte Carlo simulations are performed to compare the performances of the proposed methods of estimation.</description><identifier>ISSN: 1012-9405</identifier><identifier>EISSN: 2190-7668</identifier><identifier>DOI: 10.1007/s13370-022-01011-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Applications of Mathematics ; Approximation ; Confidence intervals ; History of Mathematical Sciences ; Inference ; Mathematics ; Mathematics and Statistics ; Mathematics Education ; Maximum likelihood estimators ; Parameters ; Probability distribution functions ; Random sampling</subject><ispartof>Afrika mathematica, 2022-09, Vol.33 (3), Article 73</ispartof><rights>African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2022</rights><rights>African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-bec35702b1f1190095dc9cbc9466bd450c4713b5231ea8c577974139a89f09b43</cites><orcidid>0000-0001-5831-3315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13370-022-01011-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13370-022-01011-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kumar, Devendra</creatorcontrib><creatorcontrib>Wang, Liang</creatorcontrib><creatorcontrib>Dey, Sanku</creatorcontrib><creatorcontrib>Salehi, Mahdi</creatorcontrib><title>Inference on generalized inverted exponential distribution based on record values and inter-record times</title><title>Afrika mathematica</title><addtitle>Afr. Mat</addtitle><description>Based on record values and inter-record times, this paper develops inference procedures for the estimation of the parameters of generalized inverted exponential distribution (GIED). First, based on inverse and random sampling schemes, we derive the maximum likelihood estimators (MLEs) and associated asymptotic confidence intervals of the unknown parameters. We also show that when the scale parameter is known, the MLE of the shape parameter converges in mean square to the true value. Next, we obtain the Bayes estimators of the unknown parameters of the GIED under inverse sampling scheme using gamma priors for both shape and scale parameters. Besides, highest posterior density intervals are also obtained. Further, the Bayes estimators are obtained based on symmetric (squared error) and asymmetric (linear-exponential) loss functions with the help of Lindley’s approximation method and Metropolis-Hasting algorithm. To illustrate the findings, two data sets are analyzed for illustrative purposes and Monte Carlo simulations are performed to compare the performances of the proposed methods of estimation.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Approximation</subject><subject>Confidence intervals</subject><subject>History of Mathematical Sciences</subject><subject>Inference</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics Education</subject><subject>Maximum likelihood estimators</subject><subject>Parameters</subject><subject>Probability distribution functions</subject><subject>Random sampling</subject><issn>1012-9405</issn><issn>2190-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UE1PwzAMjRBITLA_wKkS54CTtElzRBMfkyZxgXOUpO7otKUj6abBryejk7jhiy37vWf7EXLD4I4BqPvEhFBAgXMKDBijhzMy4UwDVVLW52SSm5zqEqpLMk1pBTlKyWQlJuRjHlqMGDwWfSiWGDDadfeNTdGFPcYhF3jY9gHD0Nl10XRpiJ3bDV1GO5vyOBcRfR-bYm_XO0yFDUfygJGe-kO3wXRNLlq7Tjg95Svy_vT4Nnuhi9fn-exhQT0HGKhDLyoF3LGW5Q9AV43X3nldSumasgJfKiZcxQVDW_tKKa1KJrStdQvaleKK3I6629h_5nMGs-p3MeSVhstayFqVWmYUH1E-9ilFbM02dhsbvwwDczTVjKaabKr5NdUcMkmMpJTBYYnxT_of1g__y3sj</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Kumar, Devendra</creator><creator>Wang, Liang</creator><creator>Dey, Sanku</creator><creator>Salehi, Mahdi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5831-3315</orcidid></search><sort><creationdate>20220901</creationdate><title>Inference on generalized inverted exponential distribution based on record values and inter-record times</title><author>Kumar, Devendra ; Wang, Liang ; Dey, Sanku ; Salehi, Mahdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-bec35702b1f1190095dc9cbc9466bd450c4713b5231ea8c577974139a89f09b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Approximation</topic><topic>Confidence intervals</topic><topic>History of Mathematical Sciences</topic><topic>Inference</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics Education</topic><topic>Maximum likelihood estimators</topic><topic>Parameters</topic><topic>Probability distribution functions</topic><topic>Random sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Devendra</creatorcontrib><creatorcontrib>Wang, Liang</creatorcontrib><creatorcontrib>Dey, Sanku</creatorcontrib><creatorcontrib>Salehi, Mahdi</creatorcontrib><collection>CrossRef</collection><jtitle>Afrika mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Devendra</au><au>Wang, Liang</au><au>Dey, Sanku</au><au>Salehi, Mahdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inference on generalized inverted exponential distribution based on record values and inter-record times</atitle><jtitle>Afrika mathematica</jtitle><stitle>Afr. Mat</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>33</volume><issue>3</issue><artnum>73</artnum><issn>1012-9405</issn><eissn>2190-7668</eissn><abstract>Based on record values and inter-record times, this paper develops inference procedures for the estimation of the parameters of generalized inverted exponential distribution (GIED). First, based on inverse and random sampling schemes, we derive the maximum likelihood estimators (MLEs) and associated asymptotic confidence intervals of the unknown parameters. We also show that when the scale parameter is known, the MLE of the shape parameter converges in mean square to the true value. Next, we obtain the Bayes estimators of the unknown parameters of the GIED under inverse sampling scheme using gamma priors for both shape and scale parameters. Besides, highest posterior density intervals are also obtained. Further, the Bayes estimators are obtained based on symmetric (squared error) and asymmetric (linear-exponential) loss functions with the help of Lindley’s approximation method and Metropolis-Hasting algorithm. To illustrate the findings, two data sets are analyzed for illustrative purposes and Monte Carlo simulations are performed to compare the performances of the proposed methods of estimation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13370-022-01011-x</doi><orcidid>https://orcid.org/0000-0001-5831-3315</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1012-9405
ispartof Afrika mathematica, 2022-09, Vol.33 (3), Article 73
issn 1012-9405
2190-7668
language eng
recordid cdi_proquest_journals_2683687496
source SpringerLink Journals
subjects Algorithms
Applications of Mathematics
Approximation
Confidence intervals
History of Mathematical Sciences
Inference
Mathematics
Mathematics and Statistics
Mathematics Education
Maximum likelihood estimators
Parameters
Probability distribution functions
Random sampling
title Inference on generalized inverted exponential distribution based on record values and inter-record times
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inference%20on%20generalized%20inverted%20exponential%20distribution%20based%20on%20record%20values%20and%20inter-record%20times&rft.jtitle=Afrika%20mathematica&rft.au=Kumar,%20Devendra&rft.date=2022-09-01&rft.volume=33&rft.issue=3&rft.artnum=73&rft.issn=1012-9405&rft.eissn=2190-7668&rft_id=info:doi/10.1007/s13370-022-01011-x&rft_dat=%3Cproquest_cross%3E2683687496%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2683687496&rft_id=info:pmid/&rfr_iscdi=true