Mid-reversibility properties of semigroup actions on homogeneous spaces

In this paper we study mid-reversibility of subsemigroups acting on homogeneous spaces. The mid-reversor set of a subsemigroup is defined and it is described in terms of the invariant control sets for semigroups acting on certain homogeneous spaces. Let G be a connected noncompact semi-simple Lie gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semigroup forum 2022-06, Vol.104 (3), p.689-703
Hauptverfasser: Reis, Ronan A., San Martin, Luiz A. B., Rocha, Victor H. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 703
container_issue 3
container_start_page 689
container_title Semigroup forum
container_volume 104
creator Reis, Ronan A.
San Martin, Luiz A. B.
Rocha, Victor H. L.
description In this paper we study mid-reversibility of subsemigroups acting on homogeneous spaces. The mid-reversor set of a subsemigroup is defined and it is described in terms of the invariant control sets for semigroups acting on certain homogeneous spaces. Let G be a connected noncompact semi-simple Lie group and L a subgroup of G . Assume that S is a subsemigroup of G with nonempty interior. We characterize the mid-reversibility of the S -action on G / L in terms of the actions of S and L on the flag manifolds of G . We show that the mid-reversibility of S in G / L is related to the reversibility of S in G / L . We also present sufficient conditions for S to generate G if S is mid-reversible in G / L .
doi_str_mv 10.1007/s00233-022-10275-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2683152449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2683152449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-c251b407bd9fa3eeed8d756a8e8fb3c2e48725396bc3a60402a94b2cad9a61fb3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AU8Fz9HJJOnHURZdhRUveg5pO12z7DY1aYX990YrePMywwzv-87wMHYl4EYAFLcRAKXkgMgFYKG5PmILoSRyFLI4ZgsAWXBRCTxlZzFuIc2QywVbPbuWB_qkEF3tdm48ZEPwA4XRUcx8l0Xau03w05DZZnS-T8s-e_d7v6Ge_BSzONiG4gU76ewu0uVvP2dvD_evy0e-flk9Le_WvEGAMVUtagVF3VadlUTUlm2hc1tS2dWyQVJlgVpWed1Im4MCtJWqsbFtZXORJOfses5NX35MFEez9VPo00mDeSmFRqWqpMJZ1QQfY6DODMHtbTgYAeYbmJmBmQTM_AAzOpnkbIpJ3G8o_EX_4_oCvhtvAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2683152449</pqid></control><display><type>article</type><title>Mid-reversibility properties of semigroup actions on homogeneous spaces</title><source>SpringerLink Journals - AutoHoldings</source><creator>Reis, Ronan A. ; San Martin, Luiz A. B. ; Rocha, Victor H. L.</creator><creatorcontrib>Reis, Ronan A. ; San Martin, Luiz A. B. ; Rocha, Victor H. L.</creatorcontrib><description>In this paper we study mid-reversibility of subsemigroups acting on homogeneous spaces. The mid-reversor set of a subsemigroup is defined and it is described in terms of the invariant control sets for semigroups acting on certain homogeneous spaces. Let G be a connected noncompact semi-simple Lie group and L a subgroup of G . Assume that S is a subsemigroup of G with nonempty interior. We characterize the mid-reversibility of the S -action on G / L in terms of the actions of S and L on the flag manifolds of G . We show that the mid-reversibility of S in G / L is related to the reversibility of S in G / L . We also present sufficient conditions for S to generate G if S is mid-reversible in G / L .</description><identifier>ISSN: 0037-1912</identifier><identifier>EISSN: 1432-2137</identifier><identifier>DOI: 10.1007/s00233-022-10275-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Lie groups ; Mathematics ; Mathematics and Statistics ; Research Article ; Semigroups ; Subgroups</subject><ispartof>Semigroup forum, 2022-06, Vol.104 (3), p.689-703</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-c251b407bd9fa3eeed8d756a8e8fb3c2e48725396bc3a60402a94b2cad9a61fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00233-022-10275-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00233-022-10275-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Reis, Ronan A.</creatorcontrib><creatorcontrib>San Martin, Luiz A. B.</creatorcontrib><creatorcontrib>Rocha, Victor H. L.</creatorcontrib><title>Mid-reversibility properties of semigroup actions on homogeneous spaces</title><title>Semigroup forum</title><addtitle>Semigroup Forum</addtitle><description>In this paper we study mid-reversibility of subsemigroups acting on homogeneous spaces. The mid-reversor set of a subsemigroup is defined and it is described in terms of the invariant control sets for semigroups acting on certain homogeneous spaces. Let G be a connected noncompact semi-simple Lie group and L a subgroup of G . Assume that S is a subsemigroup of G with nonempty interior. We characterize the mid-reversibility of the S -action on G / L in terms of the actions of S and L on the flag manifolds of G . We show that the mid-reversibility of S in G / L is related to the reversibility of S in G / L . We also present sufficient conditions for S to generate G if S is mid-reversible in G / L .</description><subject>Algebra</subject><subject>Lie groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Research Article</subject><subject>Semigroups</subject><subject>Subgroups</subject><issn>0037-1912</issn><issn>1432-2137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AU8Fz9HJJOnHURZdhRUveg5pO12z7DY1aYX990YrePMywwzv-87wMHYl4EYAFLcRAKXkgMgFYKG5PmILoSRyFLI4ZgsAWXBRCTxlZzFuIc2QywVbPbuWB_qkEF3tdm48ZEPwA4XRUcx8l0Xau03w05DZZnS-T8s-e_d7v6Ge_BSzONiG4gU76ewu0uVvP2dvD_evy0e-flk9Le_WvEGAMVUtagVF3VadlUTUlm2hc1tS2dWyQVJlgVpWed1Im4MCtJWqsbFtZXORJOfses5NX35MFEez9VPo00mDeSmFRqWqpMJZ1QQfY6DODMHtbTgYAeYbmJmBmQTM_AAzOpnkbIpJ3G8o_EX_4_oCvhtvAQ</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Reis, Ronan A.</creator><creator>San Martin, Luiz A. B.</creator><creator>Rocha, Victor H. L.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220601</creationdate><title>Mid-reversibility properties of semigroup actions on homogeneous spaces</title><author>Reis, Ronan A. ; San Martin, Luiz A. B. ; Rocha, Victor H. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-c251b407bd9fa3eeed8d756a8e8fb3c2e48725396bc3a60402a94b2cad9a61fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Lie groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Research Article</topic><topic>Semigroups</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reis, Ronan A.</creatorcontrib><creatorcontrib>San Martin, Luiz A. B.</creatorcontrib><creatorcontrib>Rocha, Victor H. L.</creatorcontrib><collection>CrossRef</collection><jtitle>Semigroup forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reis, Ronan A.</au><au>San Martin, Luiz A. B.</au><au>Rocha, Victor H. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mid-reversibility properties of semigroup actions on homogeneous spaces</atitle><jtitle>Semigroup forum</jtitle><stitle>Semigroup Forum</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>104</volume><issue>3</issue><spage>689</spage><epage>703</epage><pages>689-703</pages><issn>0037-1912</issn><eissn>1432-2137</eissn><abstract>In this paper we study mid-reversibility of subsemigroups acting on homogeneous spaces. The mid-reversor set of a subsemigroup is defined and it is described in terms of the invariant control sets for semigroups acting on certain homogeneous spaces. Let G be a connected noncompact semi-simple Lie group and L a subgroup of G . Assume that S is a subsemigroup of G with nonempty interior. We characterize the mid-reversibility of the S -action on G / L in terms of the actions of S and L on the flag manifolds of G . We show that the mid-reversibility of S in G / L is related to the reversibility of S in G / L . We also present sufficient conditions for S to generate G if S is mid-reversible in G / L .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00233-022-10275-5</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0037-1912
ispartof Semigroup forum, 2022-06, Vol.104 (3), p.689-703
issn 0037-1912
1432-2137
language eng
recordid cdi_proquest_journals_2683152449
source SpringerLink Journals - AutoHoldings
subjects Algebra
Lie groups
Mathematics
Mathematics and Statistics
Research Article
Semigroups
Subgroups
title Mid-reversibility properties of semigroup actions on homogeneous spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A55%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mid-reversibility%20properties%20of%20semigroup%20actions%20on%20homogeneous%20spaces&rft.jtitle=Semigroup%20forum&rft.au=Reis,%20Ronan%20A.&rft.date=2022-06-01&rft.volume=104&rft.issue=3&rft.spage=689&rft.epage=703&rft.pages=689-703&rft.issn=0037-1912&rft.eissn=1432-2137&rft_id=info:doi/10.1007/s00233-022-10275-5&rft_dat=%3Cproquest_cross%3E2683152449%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2683152449&rft_id=info:pmid/&rfr_iscdi=true